Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment

Ralf Rabus a, Matthias Boll c, Johann Heider e, Rainer U. Meckenstock f, g, Wolfgang Buckel e, Oliver Einsle d, Ulrich Ermler h, Bernard T. Golding i, Robert P. Gunsalus t, Peter M.H. Kroneck i, Martin Krüger k, Tillmann Lueders f, Berta M. Martins l, Florin Musat m, Hans H. Richnow m, Bernhard Schink l, Jana Seifert o, Maciej Szaleniec v, Tina Treude q, u, G. Matthias Ullmann p, Carsten Vogt m, Martin von Bergen n, w, Heinz Wilkes b, r

a General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany; b Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany; c Microbiology, Institute for Biology II, and d Biochemistry, Institute for Biochemistry, Albert Ludwigs University Freiburg, Freiburg, Germany; e Laboratory for Microbial Biochemistry and LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany; f Institute for Groundwater Ecology (IGOE), Helmholtz-Zentrum München, Munich, Germany; g Institute of Soil Ecology, University of Konstanz, Konstanz, Germany; h Max Planck Institute for Biophysics, Frankfurt, Germany; i Bio-organic Chemistry, and j Microbial Ecology, Limnology and General Microbiology, Department of Biology, University of Konstanz, Konstanz, Germany; k Department of Resource Geochemistry, BGR – Federal Institute for Geosciences and Natural Resources, Hannover, Germany; l Structural Biology and Biochemistry, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; m Department of Isotope Biogeochemistry and n Departments of Metabolomics and Proteomics, Helmholtz Center for Environmental Research – UFZ, Leipzig, Germany; o Institute of Animal Science, University of Hohenheim, Stuttgart, Germany; p Computational Biochemistry, University of Bayreuth, Bayreuth, Germany; q Marine Geobiology, Helmholtz Center for Ocean Research Kiel – Geomar, Kiel, Germany; r Organic Geochemistry, Helmholtz Center Potsdam – GFZ German Research Center for Geosciences, Potsdam, Germany; s School of Chemistry, Newcastle University, Newcastle upon Tyne, UK; t Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, and u Department of Earth, Planetary and Space Sciences and Atmospheric and Oceanic Sciences, UCLA, Los Angeles, Calif., USA; v Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Kraków, Poland; w Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark

Key Words
Aromatic compounds · n-Alkanes · Anaerobic bacteria · Reactions · Enzymes · Crystal structure · Stereochemistry · Phylogeny · Alkyl-/arylalkylsuccinate synthases · Stable isotope probing · Microbial diversity · Stable isotope fractionation

Abstract
Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on ‘Anaerobic biodegradation of hydrocarbons’ [this issue, pp. 1–244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics...
ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methyl-naphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O$_2$-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycy1 radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive deamidization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetyl-e, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.

© 2016 S. Karger AG, Basel

Introduction

Role of Hydrocarbons in Natural Environments and the Technosphere

Aliphatic and aromatic hydrocarbons and other aromatic compounds represent the most abundant small organic molecules on earth and occur predominantly in anoxic (devoid of O$_2$) terrestrial soils, marine sediments or deep subsurface environments. This global abundance substantiates the importance of their biodegradation for a balanced global carbon budget. Hydrocarbons are highly valuable natural resources for energy generation and chemical industry. They represent the major constituents of natural oil, coal and gas, with about 1012 t of carbon stored in worldwide reservoirs that have formed over geological time scales. Hydrocarbons are also recently formed either biologically (e.g. by bacteria, animals and plants) or by abiotic thermogenic processes in deep-sea sediments [Wilkes and Schwarzbauer, 2010]. Thus, such compounds are potential and ubiquitous substrates for microbial metabolism albeit often considered as recalcitrant under anoxic conditions. Anthropogenic activities (e.g. transport and storage of oil or gasoline) increasingly lead to contamination of ground water ecosystems (potentially impairing drinking water supplies) and oceanic water bodies by accidental spills. As aromatic hydrocarbons exhibit a relatively higher water solubility and toxicity than alkanes, it is important to understand their biodegradation pathways and the factors controlling elimination processes in the environment. On the other hand, the biodegradation in oil reservoirs affects the quantity and quality of fossil fuels, in particular crude oil, and thus gives rise to fundamental geological and industrial interest.

Biochemical Challenge of Anaerobic Degradation of Hydrocarbons

The chemical inertness of hydrocarbons poses an energetic and mechanistic challenge for microbial metabolism. This is particularly true for the initial activation and eventual cleavage of the apolar C–H bond, where high energy barriers have to be overcome. The initial functionalization is instrumental for channeling the hydrocarbon substrates into central catabolic routes. In oxic environments, C–H bond activation is mainly accomplished by O$_2$-dependent oxygenase-catalyzed reactions, which are largely irrelevant under anoxic conditions. The only exceptions are the recently discovered ‘intra-aerobic’ anaerobes which apparently derive oxygen species from utilizing chlorate or nitrite to employ monooxygenases for attacking hydrocarbon substrates (e.g. during anaerobic growth of Candidatus Methyloirabilis oxyfera with methane [Ettwig et al., 2010], gammaproteobacterial strain HdN1 with n-hexadecane [Zedelius et al., 2011] and Pseudomonas chloritidismutans AW-1 with n-decane [Mehboob et al., 2015]). Accordingly, anaerobic degradation of hydrocarbons involves a variety of intriguing biochemically unprecedented reactions, as indicated by previous microbiological and biochemical research on some model compounds. Examples of such anaerobic reactions are the addition of toluene or n-alkanes to fumarate, the O$_2$-independent hydroxylation of ethylbenzene and the ATP-dependent and ATP-independent variants of reductive deamidization of the central intermediate benzoyl-CoA. These novel enzymatic reactions may represent blueprints for biomimetic examples of C–H bond activation and Birch type reductions that in current organic synthesis typically requires expensive transition metal catalysts and does not exhibit enantioselectivity [Labinger and Bercaw, 2002].

Scope of this Synopsis

This synopsis aims at providing a brief overview of the results from research on anaerobic hydrocarbon degradation conducted within the framework of the Priority Pro-
Table 1. Pure and enriched cultures of bacteria used to study anaerobic degradation of hydrocarbons coupled to nitrate, sulfate or iron reduction or to fermentative or syntrophic growth

<table>
<thead>
<tr>
<th>Organism</th>
<th>Key substrate(s)</th>
<th>e⁻ acceptor</th>
<th>Phylogeny</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatoleum aromaticum EbN1</td>
<td>Toluene, ethylbenzene</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Rabus and Widdel, 1995</td>
</tr>
<tr>
<td>Aromatoleum aromaticum pCyN1</td>
<td>p-Cymene</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Harms et al., 1999a</td>
</tr>
<tr>
<td>Aromatoleum sp. strain HxN1</td>
<td>n-Hexane</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Ehrenreich et al., 2000</td>
</tr>
<tr>
<td>Aromatoleum sp. strain mXyN1</td>
<td>Toluene, m-xylene</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Rabus and Widdel, 1995</td>
</tr>
<tr>
<td>Aromatoleum sp. strain ToN1</td>
<td>Toluene</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Rabus and Widdel, 1995</td>
</tr>
<tr>
<td>Azoarcus sp. strain T</td>
<td>Toluene</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Dolfing et al., 1990</td>
</tr>
<tr>
<td>Desulfobacula toluolica Tol2</td>
<td>Toluene</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Rabus et al., 1993</td>
</tr>
<tr>
<td>Desulfococcus biacutus</td>
<td>Acetone</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Platen et al., 1990</td>
</tr>
<tr>
<td>Desulfococcus oleovorans Hxd3</td>
<td>n-Hexadecane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Ackersberg et al., 1991</td>
</tr>
<tr>
<td>Enrichment culture BF</td>
<td>Benzene</td>
<td>Fe³⁺</td>
<td>Peptococcaceae</td>
<td>Kunapuli et al., 2007</td>
</tr>
<tr>
<td>Enrichment culture N47</td>
<td>Naphthalene, 2-methyl-naphthalene</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Meckenstock et al., 2000</td>
</tr>
<tr>
<td>Enrichment culture Prop12-GMe</td>
<td>Propane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Kniemeyer et al., 2007</td>
</tr>
<tr>
<td>Enrichment culture Propane 60-GuB</td>
<td>Propane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Kniemeyer et al., 2007</td>
</tr>
<tr>
<td>Enrichment culture But12-GuMe</td>
<td>n-Butane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Kniemeyer et al., 2007</td>
</tr>
<tr>
<td>Enrichment culture But12-HyR</td>
<td>n-Butane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Jaekel et al., 2013</td>
</tr>
<tr>
<td>Geobacter metallireducens GS-15</td>
<td>Benzoate</td>
<td>Fe³⁺</td>
<td>Deltaproteobacteria</td>
<td>Lovley et al., 1993</td>
</tr>
<tr>
<td>Magnetospirillum sp. strain pMbN1</td>
<td>p-Methylbenzoate</td>
<td>NO₇⁻</td>
<td>Alphaproteobacteria</td>
<td>Lahme et al., 2012</td>
</tr>
<tr>
<td>Pelobacter acetyliciens</td>
<td>Acetylethanol</td>
<td>Fermenting</td>
<td>Deltaproteobacteria</td>
<td>Schink, 1985</td>
</tr>
<tr>
<td>Peptoclostridium difficile⁸</td>
<td>p-Hydroxyphenylacetate</td>
<td>Fermenting</td>
<td>Peptostreptococcaceae</td>
<td>Yutin and Galperin, 2013</td>
</tr>
<tr>
<td>Sterolibacterium denitrificans Chol-1ST</td>
<td>Cholesterol</td>
<td>NO₃⁻</td>
<td>Betaproteobacteria</td>
<td>Tarlera and Denner, 2003</td>
</tr>
<tr>
<td>Strain BuS5</td>
<td>n-Butane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Kniemeyer et al., 2007</td>
</tr>
<tr>
<td>Strain mXyS1</td>
<td>Toluene, m-xylene</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Harms et al., 1999b</td>
</tr>
<tr>
<td>Strain NaphS2</td>
<td>Naphthalene, 2-methyl-</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Kniemeyer et al., 2007</td>
</tr>
<tr>
<td>Strain OcN1</td>
<td>n-Octane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Ehrenreich et al., 2000</td>
</tr>
<tr>
<td>Strain oXyS1</td>
<td>Toluene, o-xylene</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Harms et al., 1999b</td>
</tr>
<tr>
<td>Strain TD3</td>
<td>n-Decane</td>
<td>SO₄²⁻</td>
<td>Deltaproteobacteria</td>
<td>Rueter et al., 1994</td>
</tr>
<tr>
<td>Syntrophus aciditrophicus SB</td>
<td>Benzoate</td>
<td>Syntrophic</td>
<td>Deltaproteobacteria</td>
<td>Hopkins et al., 1995</td>
</tr>
<tr>
<td>Thauera aromatica K172</td>
<td>Toluene</td>
<td>SO₄²⁻</td>
<td>Betaproteobacteria</td>
<td>Ahmed et al., 1995</td>
</tr>
<tr>
<td>Thauera aromatica T1</td>
<td>Toluene</td>
<td>SO₄²⁻</td>
<td>Betaproteobacteria</td>
<td>Song et al., 1998</td>
</tr>
<tr>
<td>Thauera pCyN2</td>
<td>p-Cymene</td>
<td>SO₄²⁻</td>
<td>Betaproteobacteria</td>
<td>Harms et al., 1999a</td>
</tr>
</tbody>
</table>

⁸ Renamed from Clostridium difficile.

The program 1319 'Biological transformation of hydrocarbons in the absence of oxygen: from the molecular to the global scale' funded by the Deutsche Forschungsgemeinschaft from 2009 to 2015. This priority program has early roots in ground-breaking studies from the 1990s by the groups of G. Fuchs (Freiburg) and F. Widdel (Bremen), which provided the first enzymatic evidence for fumarate-dependent activation of toluene to benzylsuccinate [Biegert et al., 1996], phenylphosphate formation preceding carboxylation during anaerobic phenol degradation [Lack and Fuchs, 1994] and reductive deamidation of benzoyl-CoA [Boll and Fuchs, 1995], as well as the isolation of the first pure culture degrading n-alkanes anaerobically [Ackersberg et al., 1991], the discovery of sulfate-reducing bacteria thriving on hydrocarbons from crude oil [Rueter et al., 1994] and the culture-based evidence of methanogenic degradation of n-alkanes [Zengler et al., 1999].

The program was based on an interdisciplinary collaboration of microbiologists, biochemists, organic chemists and environmental scientists, and benefited from the availability of a variety of pure cultures (partly genome sequenced) anaerobically degrading model hydrocarbons and other aromatic/aliphatic compounds of interest (Table 1). While keeping a clear focus on the key enzymatic reactions rendering anaerobic degradation of hydrocar-
Theme-focused reviews are compiled in the special topic ‘Anaerobic biodegradation of hydrocarbons’ of the *Journal of Molecular Microbiology and Biotechnology* [this issue, pp. 1–244]. For reasons of succinctness, only selected results are highlighted, and the relevant primary literature is largely only provided in the respective theme-focused reviews rather than in this synopsis.

Metabolism of Aromatic Compounds

Toluene-Activating Benzylsuccinate Synthase, the Archetype of Alkyl-/Arylalkylsuccinate Synthases

An overview of structural and functional properties of toluene-activating benzylsuccinate synthase (BSS) and other related glycyl radical-bearing alkyl-/arylalkylsuccinate synthases is provided by Heider et al. [2016b]. BSS and glycyl radical enzymes in general carry a conserved glycine residue close to the C terminus of the catalytic subunit for generating an organic (glycyl) radical and a structurally close-by cysteine residue, assumed to function as reactive (thiyl) radical. The αβγ heteroxenamic and O₂-sensitive BSS is best studied in the betaproteobacterial strains *Thauera aromatica* K172, *T. aromatica* T1 and *Azoarcus* sp. strain T, and was previously shown to stereospecifically add toluene to the cosubstrate fumarate forming (R)-benzylsuccinate.

Based on biochemical, structural and modeling data, the following mechanistic concept for the catalytic cycle of BSS has been conceived (fig. 1a, upper panel). Upon substrate binding (first fumarate, then toluene in a long active site cavity of BSS from *T. aromatica* T1 [Funk et al., 2015]), a reactive thiyl radical (Cys493) is generated at the expense of the spatially close-by resting-state glycyl radical (Gly829). In the initial step controlling the reaction rate, the thiyl radical abstracts a hydrogen atom from the methyl group, yielding a first transition state (fig. 1a, lower panel) with the highest energy level and subsequently an enzyme-bound benzyl radical intermediate. This transient intermediate subsequently attacks the double bond of fumarate, which is oriented in the pro-R position in the active site. This attack generates a new C–C bond to yield a benzylsuccinyl radical, with inverted stereochemistry at the former methyl group. Finally, back transfer of the initially abstracted hydrogen atom by syn-addition to the succinate moiety leads to the formation of the final product, (R)-benzylsuccinate, and reestablishment of the thiyl radical at the conserved Cys. The catalytically relevant Gly829 and Cys493 residues of the BSS α-subunit reside on the tips of two finger loops extending into a 10-stranded β/α-barrel, as represented in the core fold of all known glycyl radical enzymes. The enzyme-bound fumarate provides a charged COO⁻ group interacting with the positively charged neighboring Arg508, a universally conserved residue of alkyl-/arylalkylsuccinate synthases.

The reaction principle of BSS is widespread from a threefold perspective. (i) All anaerobic degraders of toluene and methyl-substituted monoaromatic hydrocarbons investigated to date employ the fumarate-dependent activation (except for p-cymene-degrading *Armatoleum aromaticum* strain pCyN1, see below). Phylogenetic analysis (fig. 1b) revealed BSS orthologs to form a monophyletic clade with the branching order of the proteins reflecting the taxonomic affiliation of the source bacteria. (ii) Proteogenomic analysis of novel isolates of nitrate- or sulfate-reducing bacteria has revealed further clades (fig. 1b) of alkyl-/arylalkylsuccinate synthases specific for p-cymene ([4-isopropylbenzyl]succinate synthase, Ibs), p-cresol ([4-hydroxybenzyl]succinate synthase, Hbs), 2-methylnaphthalene ([2-naphthylmethyl]succinate synthase, Nms) and n-alkanes ([1-methylalkyl]succinate synthase, Mas). (iii) Alkylsuccinate synthases of n-alkane degraders have an unprecedented wide range of hydrocarbons that can be co-metabolically acti-

![Fig. 1. Alkyl- and arylalkylsuccinate synthases adding hydrocarbons to fumarate.](image-url)

Modified from Heider et al. [2016b]. B Phylogenetic relationship of currently known alkyl-/arylalkylsuccinate synthases based on the respective catalytically active α-subunits. Compound names: 1 = toluene, m-xylene or p-xylene; 2 = p-cymene; 3 = p-cresol; 4 = 2-methylnaphthalene; 5 = n-alkanes with C₅ to C₁₆ chain length. Blue dots indicate the reactive carbon atom at the hydrocarbon substrate. Enzyme names of alkyl-/arylalkylsuccinate synthases are provided in the text. Modified from Rabus et al. [2016].

(For figure see next page.)

Rabus et al.
Iron-reducing bacteria
- E. coli K12
- C. butyricum Dvu_2272
- Dv. vulgaris Hildenborough

Sulfate-reducing bacteria
- NmsA strain NaphS2
- NmsA enrichment culture N47

Nitrate-reducing bacteria
- Ass1 Df. alkenivorans AK-01
- Ass2 Df. alkenivorans AK-01
- MasA Aromatoleum sp. strain HxN1

Organismic groups
- Toluene
- Fumarate
- Toluene radical
- Benzyl radical
- Benzylsuccinyl radical

General reaction scheme
- ES
- TS1
- TS2
- TS3
- P

Copyright © 2018 Wiley Periodicals, Inc. All rights reserved.
vated to the respective succinate derivatives (see below section 'Stereochchemistry of anaerobic activation of n-alkanes and co-metabolic capacities of anaerobic n-alkane degraders'). Recent homology modeling on the basis of the BSS X-ray crystal structure [Funk et al., 2015] revealed active site substitutions (2, 4 and 6, respectively) in Ibs, Hbs and Nms that could specifically tailor the binding sites for the corresponding hydrocarbon substrate. However, for Mas a completely different shape of the active site appears to be required for accommodating the alkyl chain and for binding fumarate.

Ethylbenzene Dehydrogenase, Archetype for O2-Independent Hydroxylation

Mechanistic and structural insights into ethylbenzene dehydrogenase (EBDH) from denitrifying *A. aromaticum* EbN1 and the relevance of EBDH for the O2-independent hydroxylation of other hydrocarbons are summarized by Heider et al. [2016c]. The soluble heterotrimetric EBDH contains a Mo-bis-MGD cofactor (MoCo) in the α-subunit and is closely related to membrane-anchored nitrate reductase from *Escherichia coli* (NarGHI) of the DMSO reductase subfamily II. In EBDH, liganding of Mo involves the dithiolenes of the two pterins as well as conserved Asp223. EBDH catalyzes the O2-independent hydroxylation of its natural substrate ethylbenzene to enantiomerically pure (S)-1-phenylethanol. Notably, the enzyme converts >30 further ring-substituted mono- and bicyclic aromatic compounds enantioselectively to the respective alcohols with (S)-configuration, which are catalytic capacities with strong biotechnological potential.

According to structural and modeling studies, the catalytic mechanism of EBDH based on homolytic C–H bond cleavage is currently perceived as follows (fig. 2a). Initially, the C–H bond of the methylene group is activated via a first transition state characterized by transfer of a hydrogen atom from the methylene group of ethylbenzene to the oxidized MoCo (MoV–OH state) yielding a radical-state hydrocarbon intermediate and semireduced MoCo (MoV–OH state). A subsequent hydroxyl rebound reaction from the MoCo to the radical intermediate proceeds via a carbocation state intermediate complexed with the reduced MoCo (MoV–OH; second transition state) to finally yield (S)-1-phenylethanol and MoIV. From the perspective of the Mo cofactor, the C–H bond cleavage described and the hydroxyl rebound reaction together represent the reductive half-cycle of the reaction catalyzed by EBDH. The oxidative half-cycle is responsible for coordination of H2O to the Mo cofactor and its oxidation (from MoIV to MoVI) by two 1-electron transfers to the FS0-[Fe4S4] cluster additionally present in the α-subunit (EbdA). Further electron transfer to external cytochrome c (fig. 2b) then proceeds via the 4 Fe-S clusters in the β-subunit (EbdB) and the heme b group in the γ-subunit (EbdC). QM/MM modeling indicated the initial C–H bond cleavage as decisive for enantioselectivity, because removal of the pro-R hydrogen atom of the methylene group of ethylbenzene is considerably slower than that of the pro-S hydrogen atom.

Recently, several further hydrocarbon-hydroxylating, Mo-cofactor-containing enzymes (fig. 2c) related to archetypical EBDH have been reported. (i) The steroid C25 hydroxylase (S25d) from betaproteobacterial *Sterolibac-terium denitrificans* anaerobically hydroxylates the tertiary carbon atom 25 in the alkyl side chain of cholesterol subsequent to its initial oxidation/isomerization to cholest-4-en-3-one. Notably, further degradation of the alkyl side chain is assumed to involve an unprecedented O2-independent shift of the hydroxyl group from C25 to C26. Potential application of the S25d enzyme arises from synthesis of 25-hydroxyvitamin D3, the circulating and active form of vitamin D3. (ii) *p*-Cymene dehydrogenase (CmdABC) was recently discovered in *A. aromaticum* pCyN1 by combined proteogenomic and metabolite analysis to anaerobically hydroxylate the benzyllic methyl groups of *p*-cymene (*p*-isopropyltoluene) and *p*-ethyl-

Fig. 2. Anaerobic hydroxylation of hydrocarbons by ethylbenzene dehydrogenase (EBDH) and other Mo cofactor-containing dehydrogenases. a) Overall mechanism of EBDH. TS1 = First transition state; I = intermediate; TS2 = second transition state. Fishhook (homolytic bond cleavage/formation) and normal (heterolytic bond cleavage/formation) arrows (orange) indicate reallocation of bonds. Red dots indicate full radical character. Dashed lines (gray or blue) indicate transitional bonding. Modified from Heider et al. [2016c]. b) Electron flow (red) from ethylbenzene through the three subunits of EBDH via FeS clusters (FS) and heme to the natural (Cyt c) or artificial (ferricenium, Fc) electron acceptors. The Mo cofactor (blue) in the α-subunit (EbdA) is ligated (purple) by the dithiols of 2 molybdopterin moieties and the carboxyl group of Asp223. c) Phylogenetic relationship of currently known Mo cofactor-containing dehydrogenases, based on the respective catalytically active α-subunits. Compound names: 1 = cholesterol; 2 = *p*-cymene; 3 = 4-isopropylbenzyl alcohol; 4 = ethylbenzene; 5 = (S)-1-phenylethanol; 6 = n-alkane; 7 = alkan-2-ol. Enzyme names: S25dABC = steroid C25 hydroxylase; CmdABC = *p*-cymene dehydrogenase; EbdABC = EBDH; AhyABC = presumptive alkane hydroxylase. Blue dots indicate the reactive carbon atom at the hydrocarbon substrate. Modified from Rabus et al. [2016].

(For figure see next page.)
Anaerobic Biodegradation of Hydrocarbons

DOI: 10.1159/000443997
bacterium that degrades \(p \)-alkanes independently of addition to fumarate or anaerobic generation of oxygen species. Recent proteogenomic analysis confirmed the absence of an alkylsuccinate synthase and rather indicated the involvement of an EBDH ortholog. A putative alkan C2-methylene hydroxylase (AhyABC) is proposed to activate the \(n \)-alkane at the subterminal carbon atom to the respective alkan-2-ol.

Anaerobic Degradation of 4-Alkylbenzoates and 4-Alkyltoluene

Organisms, elucidation of pathways and regulatory studies on the anaerobic degradation of \(p \)-alkylated monoaromatic compounds are compiled by Rabus et al. [2016]. Previous research on alkylbenzenes had revealed \(p \)-xylene as particularly recalcitrant substrate, but also showed the feasibility of an initial fumarate-dependent activation to (4-methylbenzyl)succinate and its subsequent conversion to 4-methylbenzoate. Therefore, the anaerobic degradation of the latter was regarded as the major challenge of the degradation pathway. In accord with this assumption, class I benzoyl-CoA reductase (BCR) from *T. aromatica* K172 is apparently incapable of acting on 4-methylbenzoyl-CoA. The \(p \)-alkyl group of 4-methylbenzoate may not be reconcileable with the properties of the substrate binding site and the proposed reaction mechanism of BCR due to its electron-releasing and space-filling properties (see below section 'The W-containing BCRs and acetylene hydrolase'). Thus, anaerobic degradation of 4-methylbenzoate may involve a specific variant of BCR.

Denitrifying *Magnetospirillum* sp. strain pMbN1 (Alphaproteobacteria) oxidizes 4-methylbenzoate completely to \(\text{CO}_2 \). Applying a combination of proteogenomics, targeted metabolite analyses and enzyme activity measurements enabled the discovery of a specific 4-methylbenzoyl-CoA pathway in addition to the classical central benzoyl-CoA pathway in strain pMbN1. The coding genes for the two pathways are organized in distinct genomic clusters. Remarkably, the \(p \)-methyl group of 4-methylbenzoate is retained beyond deamoratization, ring cleavage and \(\beta \)-oxidation to the level of 3-methylglutaryl-CoA (fig. 3a), which is assumed to be further metabolized via the leucine/isovalerate pathway. Phylogenetic analysis revealed that an apparent 4-methylbenzoyl-CoA reductase (MbrBCAD) is formed in the respective cells and branches distinctly off the archetypical class I BCR (BcrBCAD) in sequence comparison. The central metabolic role of benzoate/benzoyl-CoA in the anaerobic degradation of aromatic compounds may account for the 'regulatory' observation that the presence of benzoate represses utilization of 4-methylbenzoate (and also simultaneously of succinate from a ternary substrate mixture) in strain pMbN1. Repression is apparently executed at multiple levels, i.e. by inhibition of 4-methylbenzoate and succinate uptake as well as succinate conversion to acetyl-CoA (via pyruvate).

While the betaproteobacteria *A. aromaticum* pCyN1 and *Thauera* sp. strain pCyN2 are both known to anaerobically degrade the plant-derived hydrocarbon \(p \)-cymene (4-isopropyltoluene), they employ two different strategies for its conversion to 4-isopropylbenzoyl-CoA. In *A. aromaticum* pCyN1, the benzylic methyl group is hydroxylated by a putative \(p \)-cymene dehydrogenase (CmdABC), while in *Thauera* sp. strain pCyN2 it is added to fumarate by (4-isopropylbenzyl)succinate synthase (IbsABCDEF; fig. 3b). Both enzymes are new representatives of EBDH-like and BSS-like hydrocarbon-activating enzymes (fig. 1b, 2c). Further transformation of the initial intermediates (4-isopropyl)benzyl alcohol and (4-isopropylbenzyl)succinate involves dehydrogenations and \(\beta \)-oxidation-like reactions, respectively, leading to (4-isopropyl)benzyl-CoA in both cases.

Decarboxylation of 4-Hydroxyphenylacetate

Structural and mechanistic insights into the glycol radical enzyme 4-hydroxyphenylacetate decarboxylase (4Hpad) and its respective activase (4Hpad-AE) are summarized by Selvaraj et al. [2016]. Concurrently with activases of other glycol radical enzymes (e.g. pyruvate formate-lyase and BSS), 4Hpad-AE possesses a conserved \(N \)-terminal [4Fe-4S]\(^{1+}/1^+\) RS-cluster for reductive (\([4Fe-4S]^{2+} \rightarrow [4Fe-4S]^{1+}\)) cleavage of \(S \)-adenosylmethionine into methionine and a transient \(S' \)-deoxyadenosyl radical. Possibly, the reactivity of 4Hpad-AE is controlled by a (downregulating) additional ferredoxin-like domain to assure full activation only after complex formation of 4Hpad-AE with 4Hpad. The \(S' \)-deoxyadenosyl radical generated by 4Hpad-AE abstracts a hydrogen atom from conserved Gly\(^{673}\) of 4Hpad, leading to formation of the storage radical Gly\(^{873}\). While residing in two distinct \(\beta \)-hairpin loops, Gly\(^{873}\) and Cys\(^{503}\) are spatially arranged in close proximity to establish the glycy/thiyl radical dyad prosthetic group. Hydrogen atom transfer from Cys\(^{503}\)-SH to the Gly\(^{873}\) radical generates the reactive Cys\(^{503}\)-S' radical.
4Hpad is a (βγ)4 tetramer of heterodimers that catalyzes the conversion of 4-hydroxyphenylacetate to p-cresol. Crystal structure analysis revealed close proximity of the reactive Cys503-S∙ radical to the carboxyl group of 4-hydroxyphenylacetate. The current mechanistic reaction model derived from structural analysis and quantum chemical calculations is depicted in figure 4. In analogy to a Kolbe-type decarboxylation, the Cys503-S∙ radical oxidizes the carboxylate to a carboxyl radical, while the thiolate (Cys503-S−) is protonated to Cys503-SH by neighboring Glu505. The carboxyl radical breaks apart into CO2 and a 4-hydroxybenzyl radical. The substrate-binding mode also indicated that the p-hydroxyl group of 4-hydroxyphenylacetate is anchored via hydrogen bonding to Glu505. This is relevant for the proposed reaction mechanism, as de- and backprotonation between the phenolic group of the substrate and the carboxyl group of Glu637 facilitates intermediate formation of the 4-hydroxybenzyl radical. Finally, abstraction of a hydrogen atom from Cys503-SH yields the product p-cresol and regenerates the reactive Cys503-S∙ radical for the next round of catalysis.

Anaerobic Degradation of Benzene and Naphthalene

An overview on organisms, reactions, genes and enzymes involved in anaerobic degradation of benzene and naphthalene is provided by Meckenstock et al. [2016]. The initial reaction of anaerobic degradation of benzene and naphthalene has been studied mainly with sulfate- or nitrate-reducing prokaryotes during the past decade. Among several proposed possibilities, carboxylation of the aromatic rings to benzoate and 2-naphthoate, respectively, emerged as most likely initial reaction, based on proteogenomic studies and activity assays (fig. 5). The putative carboxylase-like protein is orthologous to the catalytic α-subunit of phenyl phosphate carboxylase from T. aromatica K172 and related to the so-called UbiD/UbiX proteins, recently demonstrated to catalyze aryl (e.g. styrene) (de)carboxylation via 1,3-dipolar cycloaddition [Payne et al., 2015]. In case of 2-methylnaphthalene, fumarate-dependent activation leads to (2-naphthylmethyl)succinyl-CoA, which is converted via a β-oxidation-like reaction sequence to naphthoyl-CoA and succinate, as known...
from anaerobic toluene degradation [Heider et al., 2016c] (fig. 5).

The further degradation of the benzene-derived benzoyl-CoA can proceed via the known central benzoyl-CoA pathway, whereas the naphthalene-derived intermediate 2-naphthoyl-CoA requires 3 newly discovered and distinct reductases for 2 successive reduction steps at the nonsubstituted ring followed by 1 reduction step at the substituted ring (fig. 5). The ATP-independent naphthoyl-CoA (NCR) and 5,6-dihydronaphthoyl-CoA (DHNCR) reductases each catalyze a 2-electron reduction step: NCR reduces naphthoyl-CoA to 5,6-dihydronaphthoyl-CoA, while DHNCR further reduces the latter to 5,6,7,8-tetrahydronaphthoyl-CoA. NCR and DHNCR belong to the old yellow enzyme family and contain FAD, FMN and a [4Fe-4S] cluster as cofactors. Finally, an ATP-dependent 5,6,7,8-tetrahydronaphthoyl-CoA reductase (THNCR) similar to class I BCR forms hexahydro-naphthoyl-CoA, the isomeric structure of which remains to be resolved. Further degradation is proposed to involve reaction sequences for the successive cleavage of the 2 rings mediated by enzymes encoded in the \textit{thn} operon of sulfate-reducing enrichment culture N47.

\textit{The W-Containing BCRs and Acetylene Hydratase}

Structural and mechanistic insights into class II BCR and acetylene hydratase (ACH) are summarized by Boll et al. [2016a]. Benzoyl-CoA represents the central intermediate of most known peripheral routes for the anaerobic degradation of aromatic compounds. BCR deaeromatisizes benzoyl-CoA via a Birch-like reaction to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA). The reaction is considered to proceed by sequential transfer of single electrons and protons via radical/anionic intermediates (fig. 6a). The benzoyl-CoA/dienoyl-CoA couple exhibits a very low reduction potential (\(E^\circ = -622\) mV). For this reason, electron transfer from any physiological reductant has to be coupled to an exergonic reaction. The well-studied class I BCR from \textit{T. aromatica} K172 operates irreversibly with a low-potential electron transfer from reduced ferredoxin (\(E^\circ = -500\) mV) being achieved by stoichiometric hydrolysis of 1 molecule ATP to ADP per

\[\text{4-Hydroxyphenylacetate } \rightarrow \text{4-Oxidobenzyl-carboxyl radical}\]

\[\text{4-Hydroxybenzyl radical } \rightarrow \text{4-Hydroxybenzyl radical with CO}_2\]

\[\text{CO}_2 \rightarrow \text{CO}_2 \text{ with } \text{p-Cresol}\]

\[\text{Fig. 4. Proposed catalytic mechanism of the glycyl-radical enzyme 4-hydroxyphenylacetate decarboxylase. Fishhook (homolytic bond cleavage/formation) and normal (heterolytic bond cleavage/formation) arrows (orange) indicate reallocation of bonds. Red dots indicate full radical character. Gray dashed lines indicate transitional bonding. Modified from Selvaraj et al. [2016].}\]
electron transferred. Class I BCR has a heteromeric αβγδ structure (fig. 6d) and is widespread among facultative anaerobes. In contrast, energy-limited obligate anaerobes employ a completely different type of BCR named class II BCR. This enzyme has a considerably more complex subunit structure, is ATP-independent and operates reversibly (fig. 6b, e). The O₂ sensitivity of both types of BCRs explains their absence in aerobic organisms. A recently discovered third class of dearomatizing arylcarboxyl-CoA reductases comprises flavin-dependent enzymes (NCR and 5,6-DHNCR) that are involved in reductive dearomatization of naphthalene (see above section ‘Anaerobic degradation of benzene and naphthalene’).

Class II BCR was mainly studied in Fe³⁺-reducing *Geobacter metallireducens* GS-15 and predicted from proteogenomic studies to be constituted by the large BamBCDEFGHI (benzoic acid metabolism) complex, with the active BamB belonging to the aldehyde:ferredoxin oxidoreductase family of W/Mo-cofactor-containing enzymes (fig. 6e). While the complete complex so far defied purification, the BamBC complex could be purified. It catalyzed the reductive dearomatization/oxidation of benzoyl-CoA and the 1,5-dienoyl-CoA, respectively, as demonstrated by isotope exchange experiments. The recently determined crystal structure of the Bam(BO)₂ heterotetramer revealed the presence of 1 *bis*-WPT cofactor (WCo; fig. 6c), 1 Zn²⁺ ion and 1 [4Fe-4S] cluster in the BamB subunit as well as 3 [4Fe-4S] clusters bound in a ferredoxin-like fold in the electron-transferring BamC subunit. Localization of the W center of WCo in an apotic and locked cavity ensures that the low-potential electron donor in the W⁴⁺ state is not dissipated by protons derived from the reducing solvent. Within the WCo, W is octahedrally coordinated by 5 sulfur atoms (4 dithiolene sulfurs from 2 molybdopterin and 1 from Cys322) and 1 additional ligand (fig. 6c). The Zn²⁺ ion does not directly interact with the WCo but is assumed to encapsulate the active site in a protective role. Upon CoA-thioester binding, the Zn²⁺-binding site disintegrates and the Zn²⁺ ion is released from the protein. Tight binding of benzoyl-

![Fig. 5. Anaerobic degradation of naphthalene and 2-methylnaphthalene in the sulfate-reducing enrichment culture N47.](image-url)

Nms = (2-Naphthylmethyl)succinate synthase; NCR = 2-naphthoate-CoA reductase; 5,6-DHNCR = 5,6-dihydro-2-naphthol-CoA reductase; 5,6,7,8-THNCR = 5,6,7,8-tetrahydro-2-naphthol-CoA reductase. Compound names: 1 = naphthalene; 2 = 2-naphthoate; 3 = 2-naphthoyl-CoA; 4 = 5,6-dihydro-2-naphthol-CoA; 5 = 5,6,7,8-tetrahydro-2-naphthol-CoA; 6 = 2-methylnaphthalene; 7 = (2-naphthylmethyl)succinate. Modified from Meckenstock et al. [2016].
(For legend see next page.)
CoA in the hydrophobic cavity shields C2 and C6 of the aromatic ring from a proton donor. Therefore, the 1,5-dienoyl-CoA is formed and not the 1,4-isomer as known for chemical Birch reduction of benzoate. From a mechanistic perspective, the recent structural insights on class II BCR are essentially in accord with a Birch-like reduction of benzyol-CoA, as (i) regions potentially involved in electron and proton transfer processes are separated in the active site, and (ii) the substrate ring is spatially oriented between the WCo and conserved His^{260} as required for proton-coupled electron transfer steps possibly ensuring that a highly reactive radical-anion intermediate is avoided (fig. 6f; the found W^{IV/V} redox chemistry is compatible with single electron transfer steps). Homology between the BamDEFGHI components and the heterodisulfide-reductase/hydrogenase complex from methanogens gave rise to the hypothesis that a flavin-based electron bifurcation [Buckel and Thauer, 2013] could enable class II BCR to drive the ‘uphill’ electron transfer from reduced ferredoxin to the active site by coupling it to the ‘downhill’ electron transfer to NAD^{+}.

ACH catalyzes the addition of a H_{2}O molecule to the triple-bond (C≡C) of acetylene (C_{2}H_{2}) yielding acetaldehyde. ACH of Pelobacter acetylenicus, like BamB described above, contains a bis-WPT-guanine-dinucleotide cofactor (WCo) and a [4Fe-4S] cluster. While the structure of ACH overall resembles that of other enzymes of the dimethyl sulfoxide reductase family, the access funnel traversing from the surface of the enzyme to the active site is unique. In the WCo, the tungsten atom is ligated by the 4 sulfur atoms of the dithiolene moieties and 1 Cys residue, similar as in BamB (fig. 6c). The sixth ligand in ACH is a tightly coordinated oxygen atom (from H_{2}O or OH^{-}), while its nature in BamB is currently unresolved (possibly a cyanide; W–C≡N). Site-directed mutagenesis revealed that Asp^{13} (activates water to add to the C≡C bond) and Ile^{142} (substrate-binding cavity) are decisive for the reaction mechanism. Proximity to a protonated Asp^{13} would transform H_{2}O into an electrophile, which may have a role in the attack on the C≡C bond. Computational studies on the other hand suggest a direct π^{2} complex of acetylene with the tungsten ion and the displaced H_{2}O to attack the π^{2}-acetylene complex forming an intermediate hydroxyethenyl species. Experimental verification of the mechanism is still missing as is the determination of the Asp^{13} protonation state.

Metabolism of Aliphatic Compounds

Stereochemistry of the Anaerobic Activation of n-Alkanes and Co-Metabolic Capacities of Anaerobic n-Alkane Degraders

Recent mechanistic insights into the stereochemistry of the anaerobic activation of n-alkanes and the capacities of anaerobic n-alkanes degraders to co-metabolically functionalize a broad range of hydrocarbons other than the growth-supporting ones are summarized by Wilkes et al. [2016]. Previous studies with the denitrifying betaproteobacterium Aromatoleum sp. strain HxN1 had suggested that anaerobic degradation of n-hexane proceeds via addition of a hex-2-yl radical to fumarate leading to (1-methylpentyl)succinate (MPS). In contrast to the related transformation of toluene to (R)-benzylsuccinate by BSS, the MPS synthase forms 2 stereocenters at adjacent carbon atoms. Comparison to synthetic standards demonstrated formation of (2R,1’R)- and (2S,1’R)-MPS. To elucidate the stereochemical course of involved hydrogen atom abstraction, incubation experiments of Aromatoleum sp. strain HxN1 with chemically synthesized (S,S)-, (R,R)- and meso-n-(2,5-^{2}H_{2})hexane isomers were conducted. Thus, MPS synthase is proposed to homolytically cleave the pro-S hydrogen atom at C2 of n-hexane and subsequently transfer this hydrogen atom back to C3 of MPS accompanied by inversion of configuration at C2 of n-hexane. Based on these results, a concerted reaction mechanism was suggested where the pro-S hydrogen atom and fumarate localize to opposite sides of the alkyl chain (fig. 7a). The labeling pattern of n-hexane-derived metabolites in Aromatoleum sp. strain HxN1 also agreed with the previously suggested pathway downstream of MPS. Epimerization of CoA-activated MPS is suggested

Fig. 6. Mechanisms and structures of BCRs. a Reduction of benzyol-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA) via a Birch-like mechanism. b ATP-dependent class I BCR (BcrA–D) from T. aromatica K172 versus ATP-independent class II BCR (BamB–I) from Geobacter metallireducens GS-15. c Structure of the bispyranopterin (bis-WPT) cofactor of class II BCR and ACH. d Subunit and cofactor composition of class I BCR. e Subunit and cofactor composition of class II BCR, with the E^{0} values indicative of a possible involvement of electron bifurcation. f Catalytic mechanism of class II BCR involving a proposed proton-coupled electron transfer to avoid formation of the reactive radical-anion intermediate as occurring in the chemical Birch reduction. Modified from Boll et al. [2016].
Compounds transformed (not vs. growth-supporting)

<table>
<thead>
<tr>
<th></th>
<th>Strain HxN1</th>
<th>Strain OcN1</th>
<th>Strain TD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic hydrocarbons</td>
<td>13 / 3</td>
<td>17 / 5</td>
<td>22 / 11</td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td>11 / 0</td>
<td>32 / 0</td>
<td>34 / 0</td>
</tr>
</tbody>
</table>

(For legend see next page.)
to generate the proper diastereoisomer for a mutase forming (2R,2R’)-(2-methylhexyl)malonyl-CoA. The latter has been suggested to be decarboxylated to 4-methyltcanooyl-CoA (fig. 7b), which is then converted by classical β-oxidation to 3 acetyl-CoA and 1 propionyl-CoA. Channeling the propionyl-CoA through the methylmalonyl-CoA pathway and succinate dehydrogenase regenerates the fumarate cosubstrate for the initial MPS-forming reaction.

Experiments with defined substrate mixtures demonstrated that anaerobic n-alkane degraders can activate toluene (not growth-supporting) to benzylsuccinate and convert it to benzylo-CoA as dead end product. For that purpose, they channel toluene through the ‘alkane’ route including the proposed mutase and decarboxylase reactions (fig. 7c). Probably MPS synthase-like enzymes, which cleave the stronger C–H bond (−400 kJ/mol) of an aliphatic methylene group as compared to that of a benzylic methyl group (−368 kJ/mol), are able to arbitrarily activate the not growth-supporting toluene, while BSS-like enzymes are restricted to methylated aromatic compounds. Correspondingly, anaerobic alkybenzene degraders are apparently incapable of co-transforming an n-alkane. One may speculate that the more specialized BSS-type enzymes evolved from MPS synthases having a alkane. One may speculate that the more specialized enzymes are apparently incapable of co-transforming an alkane.

The current knowledge on the activation of acetone and acetophenone by different types of carboxylases from sulfate- and nitrate-reducing bacteria is summarized by Heider et al. [2016a]. Acetone carboxylase (Acx) from denitrifying A. aromaticum EbN1 and related enzymes from other organisms are heterohexameric (αβγ) 2 enzyme complexes which do not contain biotin, but 2–3 metal ions per (αβγ) 2 complex. Acx uses bicarbonate as cosubstrate to convert acetone to acetoacetate according to the following proposed mechanism. One or 2 ATP (hydrolyzed to AMP and 2 P) are required to activate acetone to its phosphoenol derivative and bicarbonate to carboxyphosphate. These 2 highly reactive intermediates would then combine to form acetooacetate and 2 P (fig. 8a). Acx orthologs appear to fall into 2 enzyme types which

Fig. 7. Mechanism, stereochemistry and co-metabolism of anaerobic degradation of n-alkanes. a Mechanistic and stereochemical model for the anaerobic transformation of n-hexane to MPS in denitrifying Aromatoleum sp. strain HxN1. Orange fishhook arrows (homolytic bond cleavage/formation) indicate reallocation of bonds; red dots indicate full radical character. H₃ = Pro-S hydrogen atom; H₂ = pro-R hydrogen atom. Modified from Wilkes et al. [2016]. b Transformation of MPS-derived (1-methylpentyl)succinyl-CoA by proposed epimerase, mutase and decarboxylase reactions to 4-methyloctanoyl-CoA. Modified from Jarling et al. [2012]. c Co-metabolic transformation of toluene to benzylo-CoA via the ‘alkane pathway’ by n-hexane-utilizing cultures of Aromatoleum sp. strain HxN1. Compound names: 1 = n-hexene; 2 = (1-methylpentyl)succinyl-CoA; 3 = (2-methylhexyl)malonyl-CoA; 4 = 4-methyloctanoyl-CoA; 5 = 2-methylhexanoyl-CoA; 6 = toluene; 7 = benzylocetyl-CoA; 8 = (2-phenylethyl)malonyl-CoA; 9 = 4-phenylbutanoyl-CoA; 10 = benzylo-CoA. Modified from Rabus et al. [2011]. d Range of co-metabolic activation of not growth-supporting hydrocarbons by various bacteria degrading n-alkanes anaerobically (more details on the strains are provided in table 1). Data taken from table 1 in Wilkes et al. [2016].
differ in their metal content (Zn and Fe vs. Zn, Fe and Mn) and ATP stoichiometry (2 ATP vs. 1 ATP hydrolyzed per acetone carboxylated).

Acetophenone carboxylase (Apc) from *A. aromaticum* EbN1 converts acetophenone with bicarbonate as cosubstrate to benzoylacetate (fig. 8b) as part of the anaerobic ethylbenzene degradation pathway. In analogy to Acx, the acetophenone carboxylase-catalyzed reaction is proposed to involve intermediary formation of carboxyphosphate and phosphoenol acetophenone. Apc is composed of 5 subunits and hydrolyzes 2 ATP to ADP per acetophenone carboxylated. Its ATPase activity is uncoupled if 1 of the 2 substrates is absent, and the reaction rate is limited by proton abstraction from the ketone. Moreover, Apc is also capable of carboxylating the methylene group of propiophenone. Notably, *A. aromaticum* EbN1 possesses a third type of a putative ketone carboxylase, the predicted biotin-dependent 4-hydroxyacetophenone carboxylase (XccABC) as part of the anaerobic *p*-ethylphenol degradation pathway.

![Fig. 8. Carboxylases acting on acetone and acetophenone.](image-url)

Fig. 8. Carboxylases acting on acetone and acetophenone. a Proposed mechanism of biotin-independent Acx (AcxABC) from denitrifying *A. aromaticum* EbN1. *b* Proposed mechanism of acetophenone carboxylase from *A. aromaticum* EbN1. In analogy to Acx, the acetophenone carboxylase-catalyzed reaction is proposed to involve intermediary formation of carboxyphosphate and phosphoenol acetophenone. *c* Proposed carbonylation or formylation of acetone to acetoacetyl-CoA in sulfate-reducing *Desulfovoccus biacutus*. Modified from Heider et al. [2016a].
Acetone catabolism in the sulfate-reducing Desulfovoccus biacutus differs completely from that described for A. aromaticum EbN1 or other facultative anaerobes, as its genome does not possess any acx-like genes. Rather, proteogenomic, metabolite and enzymatic evidences suggest the possibilities for either carboxylation (addition of CO) at one of the methyl groups or the carbonyl group of acetone, or a formylation (addition of a formyl-CoA) of the carbonyl group of acetone (fig. 8c). The energy-limited D. biacutus would benefit from any of the 3 proposed reactions, as these afford substantially less energy expenditure than the Acx-type of carboxylation reaction.

Fermentative Formation of Cyclohexanecarboxylate

The enzymology involved in fermentative formation of cyclohexanecarboxylate via cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) from benzoate by the obligately anaerobic Syntrophus aciditrophicus is summarized by Boll et al. [2016b]. During growth with benzoate, S. aciditrophicus employs the class II BCR for reductive dearomatization of benzoyl-CoA to Ch1,5CoA and its subsequent conversion by modified β-oxidation reactions to 3-hydroxypimelyl-CoA. Further decomposition of the latter to 1 CO₂ and 3 acetyl-CoA involves biotin-dependent glutacetyl-CoA decarboxylase that couples the transformation of glutaryl-CoA (C₅) to crotonyl-CoA (C₄) to the export of H⁺/Na⁺ ions. Fermentative reduction of Ch1,5CoA to cyclohexanecarboxylate involves 2 heterotetrameric, FAD-containing dehydrogenases: the Ch1,5CoA dehydrogenase specifically reduces Ch1,5CoA to cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA), while Ch1CoA dehydrogenase converts Ch1CoA to cyclohexanecarboxylate (fig. 9a). A special property of Ch1CoA dehydrogenase is the 1,4-addition (not the common 1,2) to the diene. The recently determined crystal structure of this enzyme revealed a tight association of the substrate to the FAD cofactor and identified Asp 91 as the most like- ly proton acceptor/donor from/to C3 of the Ch1CoA/ Ch1,5CoA ring. Electron transfer from NADH (E° = −320 mV) to Ch1,5CoA (E° = −10 mV) by Ch1CoA dehydrogenase is an exergonic process, which could hypothetically be coupled to energy conservation via electron transferring protein (ETF)-mediated flavin-based electron bifurcation [Buckel and Thauer, 2013] (fig. 9b).

S. aciditrophicus performs the described cyclohexane fermentation also during axenic growth with crotonate, resulting in an increased value of standard Gibbs-free energy change (from −24.8 to −157 kJ/reaction). When S. aciditrophicus grows with cyclohexanecarboxylate synthetically with a methanogen, Ch1,5CoA and Ch1CoA dehydrogenases are also involved. S. aciditrophicus employs re-citrate synthase in an unusual pathway to generate glutamate for anabolic purposes.

Metabolism-Oriented Habitat Studies

Functional Gene Markers

The state-of-the-art of exploring natural communities of hydrocarbon-degrading bacteria by means of functional gene markers is summarized by von Netzer et al. [2016]. As outlined in the above sections, culture-based physiological, proteogenomic and biochemical studies have revealed a host of novel reactions – with partly in-depth mechanistic insights – involved in anaerobic degradation of hydrocarbons. To make this knowledge useful for the functional analysis of hydrocarbon-bearing or contaminated environments, several key genes were selected as functional markers based on the hydrocarbon specificity/range or central catabolic position of their products. These functional marker genes are: bssA, coding for the α-subunit of toluene-activating BSS; nmsA, coding for the α-subunit of naphthalene-activating (2-naphthylmethyl)succinate synthase (bssA and nmsA belong to the group of genes coding for alkyl-/arylalkylsuccinate synthases); bcrA/bcrC/ bzdN, coding for subunits of ATP-dependent class I BCRs; bamB, coding for the β-subunit of ATP-independent class II BCR; ncr, coding for 2-NCR; bamA, coding for ring-cleaving 6-oxocyclohex-1-ene-1-carboxyl-CoA hydrolase.

Most widely used in microbial molecular ecology are the gene markers for alkyl-/arylalkylsuccinate synthases, since a variety of aromatic and aliphatic hydrocarbons are activated by this group of enzymes (fig. 1b) and their conserved motifs facilitate primer design. Continued optimization has provided a suite of primers covering either alkyl-/arylalkylsuccinate synthases in general (reverse primer 8543r) or being more specific, e.g. bssA sensu strictu (forward primer 7772f; fig. 10). Screening methods for key genes range from simple PCR, terminal restriction fragment length polymorphism and qPCR to next-generation sequencing of the amplicons. Applying these assays to samples from various aromatic hydrocarbon-degrading enrichment cultures and contaminated natural systems allowed for a highly resolved phylogenetic differentiation of organisms bearing alkyl-/arylalkylsuccinate synthases (fig. 10). This included the detection of several novel lineages within...
the *Rhodocyclaceae, Desulfobulbaceae* and *Peptococcaceae* that had hitherto not been associated with the anaerobic degradation of aromatic hydrocarbons (orange branches in fig. 10). Also for central key enzymes in the breakdown of aromatic compounds, such as deaeromizing aryl-CoA reductases or aromatic ring-cleaving hydrolases, targeted detection assays are now at hand. Thus, evidence for the existence of site-specific populations of aromatic hydrocarbon-degrading bacteria has emerged, which appear to be primarily selected by the nature of the contamination as well as the availability of electron acceptors. This has implications for the monitoring of contaminated sites and also for the design of advanced bioremediation strategies.

Stable Isotope Probing

Stable isotope probing (SIP) has matured into a powerful and widely used approach to assess metabolic activities.
in conjunction with its microbial players in complex environmental samples. The latest developments and applications of SIP on the level of DNA/RNA, phospholipid fatty acids, proteins and single cells (nanoSIMS) in the field of anaerobic degradation of hydrocarbons are compiled by Vogt et al. [2016]. Complementary to the studies with functional gene markers described above, SIP approaches have contributed significantly to unraveling the diversity of anaerobic hydrocarbon degraders beyond the limits of pure cultures, in particular also in case of syntrophic processes. Key to the SIP approaches is the addition of stable isotope-labeled substrates (e.g. 13C or 15N label) to cultures or in situ samples, and to trace the assimilation of the heavy label in the total biomass or specific marker biomolecules. This allows not only to identify active (with respect to the studied substrate degradation) community members, but also to decipher metabolic fluxes. The various SIP approaches differ with respect to phylogenetic coverage and sensitivity, leading to disparate application potential under different experimental settings, e.g. enriched culture versus complex in situ sample (fig. 11).

DNA/RNA SIP investigations on slowly growing enrichment cultures with different electron acceptors and under syntrophic conditions indicated a broad diversity
of bacteria to be potentially involved in anaerobic degradation of benzene, toluene and isomers of xylene, i.e. all subclasses of the Proteobacteria as well as Peptococcaceae. In case of a m-xylene-degrading sulfate-reducing enrichment culture, a combination of DNA and protein SIP allowed not only assignment of the dominant 13C-label-incorporating phylotype to the Desulfobacteraceae, but also reconstruction of the catabolic pathway on the protein level. The latter included the alkyl-/arylalkylsuccinate synthases, the β-oxidation-like reaction sequence to 3-methylbenzoyl-CoA (upper pathway), as well as enzymes involved in the lower pathway, i.e. ring reduction and cleavage. Application of SIP to anaerobic degradation of n-hexadecane under methanogenic conditions identified dominant phylotypes belonging to the Syntrophaceae and Methanoculleus. In case of marine n-alkane-degrading sulfate-reducing sediment incubations, comprehensive SIP studies revealed the involvement of members of the habitat relevant Desulfosarcina/Desulfococcus clade and indicated involvement of the pathway previously proposed for anaerobic degradation of n-hexane in Aromatoleum sp. strain HxN1. Sulfate-reducing enrichment cultures anaerobically degrading polycyclic aromatic hydrocarbons are apparently dominated by phylotypes related to the enriched naphthalene-degrading strain N47 (Desulfobacteraceae).

Stable Isotope Fractionation

Carbon and hydrogen stable isotope fractionation resulting from C–H bond cleavage during microbial degradation of hydrocarbons and its prospects for monitoring respective degradation processes in situ are summarized by Musat et al. [2016]. An intrinsic property of enzymes is the faster turnover of the lighter isotopologue of the substrate, resulting in an enrichment of the heavier isotopologue in the residual substrate pool. In case of hydrocarbons as substrates, this isotopic fractionation is moderate for carbon and significant for hydrogen. Correlation of carbon and hydrogen stable isotope fractionation by the so-called lambda value (Λ) even renders differentiation between aerobic and anaerobic degradation reactions possible (fig. 12).

The first reaction step of anaerobic ethylbenzene degradation in denitrifying A. aromaticum EbN1 proceeds via initial homolytic C–H bond cleavage at the methylene group prior to O2-independent hydroxylation yielding (S)-1-phenylethanol (see section ‘Ethylbenzene dehydrogenase, archetype for O2-independent hydroxylation’). This reaction translates in a Λbulk value of 60 ± 5 for cultures of A. aromaticum EbN1 anaerobically growing with ethylbenzene. Similar Λbulk values (40 ± 3 and 46 ± 5, respectively) for Georgfuchsia toluolica G5G6 and an enrichment culture dominated by Azoarcus spp. implied that the same reaction principle is used for anaerobic ethylbenzene degradation in these nitrate-reducing bacteria. Notably, the lower Λbulk value of 35 ± 9 for Pseudomonas putida NCIB 9816 aerobically growing with ethylbenzene suggested that stable isotope fractionation could be used to distinguish between O2-independent and O2-dependent hydroxylation of ethylbenzene, i.e. between EBDH and ethylbenzene monooxygenase.

Anaerobic degradation of the gaseous hydrocarbons propane and n-butane has to date only been demonstrated for sulfate-reducing bacteria. Relatives of the presently sole pure culture Desulfosarcina sp. BuS5 (n-butane-degrading) were shown to occur in various marine sediments. Metabolite analysis with strain BuS5 revealed fumarate-dependent transformation of propane and n-butane at the subterminal carbon atom to isopropylsuccinate and (1-methylpropyl)succinate, respectively; surprisingly, activation at the terminal carbon atom to n-propylsuccinate was observed for n-propane. Λbulk values for the anaerobic degradation of propane and n-butane by strain BuS5, enrichment cultures and with sediment incubations ranged between approximately 5 and 10, which is markedly lower than the values given above for anaerobic hydroxylation of ethylbenzene, but still higher than for aerobic degradation of propane (3.1).
Methanogenic Degradation of Hydrocarbons

Current concepts and insights into anaerobic degradation of hydrocarbons coupled to methanogenesis are summarized by Jiménez et al. [2016]. The process of methanogenic degradation of hydrocarbons prevails at sites that are depleted of electron acceptors (e.g. NO₃⁻, SO₄²⁻, Fe³⁺), a condition typically encountered in oil reservoirs, coal deposits, groundwater aquifers and deep sediments. Due to the slowness and syntrophic nature of this process, progress in the understanding of methanogenic degradation of hydrocarbons greatly depended on integrating microbial community analysis by molecular tools with SIP and fractionation approaches.

The CH₄ production rates were found to depend on the type of hydrocarbon source provided. Essentially, the rates were highest with light oils harboring the most easily degradable hydrocarbons. Cultures enriched from Chinese oil reservoirs degraded C₁₀ to C₃₆ n-alkanes coupled to a CH₄ production rate of 76 ± 6 μmol/day/g oil. Next to n-alkanes, also BTEX and 2-methylnaphthalene can support methanogenesis in culture-based experiments. Carbon and hydrogen stable isotope fractionation analysis of methanogenic hydrocarbon-degrading enrichment cultures suggested co-occurrence of acetoclastic and CO₂-reducing methanogenesis, as also evidenced from investigation of in situ samples.

Fig. 12. Stable isotope fractionation to monitor anaerobic degradation of hydrocarbons in situ.

- **a** Depletion (blue) of hydrocarbon substrate during incubation of cultures or environmental sample.
- **b** Carbon (δ¹³C, red) and hydrogen (δ²H, green) stable isotope fractionation.
- **c** Correlation of the changes of carbon and hydrogen stable isotope fractionation by the lambda value (Λ_{bulk}; purple). Δδ¹³C, Δδ²H and Λ_{bulk} can be used to study C–H bond cleavage during anaerobic degradation of hydrocarbons. Modified from Musat et al. [2016].

Fig. 13. Scheme of anaerobic degradation of hydrocarbons under syntrophic (methanogenic) conditions emphasizing the complexity of the involved microbial community. Modified from Jiménez et al. [2016].
Microbial diversity analysis indicated that similar types of prokaryotes are involved in methanogenic hydrocarbon-degrading communities, including Firmicutes, Proteobacteria, Bacteroidetes and Spirochaetes. Their particular role in the syntrophic process of methanogenic degradation of hydrocarbons is shown in figure 13. Essentially, members of the Clostridiales and Syntrophobacterales are assigned to the initial activation of the hydrocarbons and their conversion to the fermentation products H₂ and CO₂ on the one side and acetate on the other side. Acetate conversion to CH₄ and CO₂ involves acetoclastic methanogens (Methanosarcina, Methanoseta), while that of H₂/CO₂ is performed by hydrogenotrophic methanogens (e.g. Methanobacterium). The interconversion of H₂/CO₂ and acetate via acetogenesis (e.g. Pelobacter) and syntrophic oxidation (e.g. Desulfovibrio) should be considered in the overall picture.

Future Perspectives

Based on the current insights into anaerobic degradation of hydrocarbons achieved within the framework of the Priority Program 1319, a wealth of new research questions has emerged, which is detailed in the theme-focused reviews of this special topic issue [pp. 1–244]. Selected head points are listed in the following.

• The structure of BSS including bound toluene and fumarate and its substrate specificity and modeled reaction mechanism will have to be tested by analyzing mutant variants. The structural determinants for substrate recognition of the other alkyl-/arylalkylsuccinate synthase clades (Ibs, Hbs, Nms and Mas) need to be elucidated.

• The substrate-specific structural determinants and mechanisms of the EBDH-like anaerobic hydroxylases require continued research, including the analysis of mutant variants.

• The p-methyl group in 4-methylbenzoate facilitates stereochemoical studies with synthetic isotope-labeled substrates on the dearomatization reactions; the further degradation pathway of 4-isopropylbenzoyl-CoA needs to be elucidated, and a detailed proteogenomic comparison of the A. aromaticum strains EbN1 and pCyN1 should be performed.

• The mechanism of generating a persistent radical in 4Hpad and other glycol radical enzymes by the respective activating enzymes and its stabilization is currently unknown and should be pursued in various model enzymes.

• The carboxylation of naphthalene needs to be studied at the enzyme level; the hypothesized carboxylation of benzene needs verification at the in vitro level. In particular the question of the ATP dependency of the reactions needs to be resolved.

• The reaction mechanism of ACH awaits definite elucidation. The nature of the sixth ligand of the tungsten atom in class II BCR and the mechanism for transferring 2 electrons from the Mo/W cofactors to the substrate require future research. Furthermore, the role of BamBCDEF components in class II BCRs and the possible involvement of electron bifurcation need to be resolved.

• The proposed anaerobic n-alkane degradation pathway by addition to fumarate needs to be demonstrated also on the proteogenomic and enzymatic level, amongst others to substantiate the assumed epimerization of the (1-methylalkyl)succinate intermediate. Moreover, the presence of a potential alternative pathway involving O₂-independent alkane hydroxylation needs to be confirmed.

• The differences between acetophenone, 4-hydroxyacetophenone and acetone carboxylation (also carboxylation of the latter) require further studies at the level of enzyme structures and mechanisms.

• A still unresolved question in fermentative formation of cyclohexanecarboxylate is whether and how electron bifurcation contributes to electron transfer from NADH to the enoyl-CoA.

• The successful strategy of applying functional gene markers should be complemented with nontarget, non-PCR amplification-based sequencing approaches to achieve a holistic perspective on functional capacities, diversity, abundance and distribution of intrinsic hydrocarbon degraders in the natural environment.

• SIP will continuously improve as coupled mass spectrometric devices are further advanced. Combination of the different SIP approaches according to the specific features of individual samples has to be further optimized.

• Studies on how differential (growth phase-/condition-dependent) formation of isoenzymes affects stable isotope fractionation will help interpretation of environmental data.

• Characterizing the dissemination of methanogenic degradation of hydrocarbons requires further field studies to estimate its role in the global carbon cycle. The metabolic interactions and interdependencies of the syntrophic partners need to be dissected at the systems biology level.
Acknowledgments

The research by the groups Boll (Freiburg), Buckel (Marburg), Einsle (Freiburg), Ermler (Frankfurt), Golding (Newcastle upon Tyne), Heider (Marburg), Kroneck (Konstanz), Krüger (Han- nover), Lueders (Munich), Martins (Berlin), Meckenstock (Mu- nich, Essen), Rabus (Oldenburg), Richnow (Leipzig), Schink (Konstanz), Seifert (Stuttgart), Treude (Kiel, Los Angeles, Calif.), Ullmann (Bayreuth), Vogt (Leipzig), von Bergen (Aalborg, Leipzig) and Wilkes (Potsdam, Oldenburg) summarized in this synopsis was supported by the Deutsche Forschungsgemeinschaft within the framework of the Priority Program 1319 'Biological transformations of hydrocarbons without oxygen: from the molecular to the global scale'.

References

Ackeersberg F, Bak F, Widdel F: Anaerobic oxida-
tion of saturated hydrocarbons to CO2 by a

Anders HI, Kaetzke A, Kümpfer P, Ludwig W,
Fuchs G: Taxonomic position of aromatic-
degrading denitrifying pseudomonad strains
K 172 and KB 740 and their description as
new members of the genus Thauera, as
Thauera aromatica sp. nov., and Azorarcus, as
Azorarcus evansi sp. nov., respectively, mem-
bers of the beta subclass of the Proteobacteria.

Biegert T, Fuchs G, Heider J: Evidence that
an aerobic oxidation of toluene in the denitrify-
ing bacterium Thauera aromatica is initiated by
formation of benzylsuccinate from toluene and

Boll M, Einsle O, Ermel U, Kroneck PMH, Ull-
mann GM: Structure and function of the un-
usual tungsten enzymes acetylene hydratase
and class II benzyol-CoA reductase. J Mol Mi-
crobiol Biotechnol 2016a;26:119–137.

Boll M, Fuchs G: Benzyol-coenzyme A reductase
(dearomatizing), a key enzyme of anaerobic
aromatic metabolism. ATP dependence of the
reaction, purification and some properties of the
enzyme from Thauera aromatica strain K172.

Boll M, Kung JW, Ermler U, Martins BM, Buckel
W: Fermentative cyclohexane carboxylate
formation in Syntrophus aciditrophicus. J Mol

Buckel W, Thauer RK: Energy conservation via
electron bifurcating ferredoxin reduction and
proton/Na+ translocating ferredoxin oxida-
113.

Dolling J, Zeyer J, Binder-Eicher P, Schwarzen-
bach RP: Isolation and characterization of a
bacterium that mineralizes toluene in the ab-
sence of molecular oxygen. Arch Microbiol

Ehrenreich P, Behrends A, Harder J, Widdel F:
Anaerobic oxidation of alkanes by newly iso-
lated denitrifying bacteria. Arch Microbiol

EttwigKF,ButlerMK,LePaslierD,PelletierE,
Mangenot S, Kuyppers MM, Schreiber F,
Dutilh BE, Zedelius J, de Beer D, Glerich J,
Wessels HJCT, van Alen T, Lueske F, Wu
ML, van de Pas-Schoonen KT, Op den Camp
HJM, Janssen-Megens EM, Francoois KJ,
Stunnenberg H, Weissbach I, Jetten MSM,
Strous M: Nitrite-driven anaerobic methane
oxidation by oxygenic bacteria. Nature 2010;

Funk MA, Marsh EN, Drennan CL: Substrate-
bound structures of benzylsuccinate synthase
reveal how toluene is activated in anaerobic
290:22398–22408.

Gittel A, Donhauser J, Roy H, Girgis PR, Jor-
gensen BK, Kjeldsen KU: Ubiquitous pres-
ence and novel diversity of anaerobic alkane
degraders in cold marine sediments. Front

Harms G, Rabus R, Widdel F: Anaerobic oxida-
tion of the aromatic plant hydrocarbon p-cy-
mene by newly isolated denitrifying bacteria.

Harms G, Zengler K, Rabus R, Ackeersberg F,
Minz D, Rosselló-Mora R, Widdel F: Anaero-
bic degradation of α-xylene, m-xylene, and
homologous alkylbenzenes by new types of
sulfate-reducing bacteria. Appl Environ Mi-
crobiol 1999b;65:999–1004.

Heider J, Schüle H, Frey J, Schink B: Activation
of acetone and other simple ketones in anaer-
2016a;26:152–164.

Heider J, Szaleniec M, Martins BM, Seyhan D,
Buckel W, Golding BT. Structure and func-
tion of benzylsuccinate synthase and related
fumarate-adding glycol radical enzymes.

Heider J, Szaleniec M, Sünwoldt K, Boll M: Ethyl-
benzene dehydrogenase and related molybde-
um enzymes involved in oxygen-independent
alkyl chain hydroxylation. J Mol Microbiol
Biotechnol 2016c;26:45–62.

Hopkins BT, McNerney MJ, Warikoo V: Evi-
dence for anaerobic syntrophic benzoate de-
gradation threshold and isolation of the syn-
trophic benzoate degrader. Appl Environ Mi-

Jaekel U, Musat N, Adam B, Kuyppers M, Grund-
mann O, Musat F: Anaerobic degradation of
propane and butane by sulfate-reducing bac-
teria enriched from marine hydrocarbon cold

Jarling R, Sadeghi M, Drozdzowska M, Lahme S,
Buckel W, Rabus R, Widdel F, Golding BT,
Wilkes H: Stereochemical investigations re-
veal the mechanism of the bacterial activation
of n-alkanes without oxygen. Angew Chem

Jiménez N, Richnow HH, Vogt C, Treude T,
Krüger M: Methanogenic hydrocarbon deg-
radation: evidence from field and laboratory
studies. J Mol Microbiol Biotechnol 2016;26:
227–242.

Johnson JM, Wawrik B, Ison C, Boling WB, Cal-
laghane AV: Interrogation of Chesapeake Bay
sediment microbial communities for intrinsic
alum-utilizing potential under anaerobic condi-

Kniemeyer O, Musat F, Sievert SM, Knittel K,
Wilkes H, Blumenberg M, Michaels W, Clas-
sen A, Bolm C, Joyce SB, Widdel F: Anaero-
bic oxidation of short-chain hydrocarbons by
marine sulphate-reducing bacteria. Nature

Kunapuli U, Lueders T, Meckenstock RU: The use
of stable isotope probing to identify key iron-
reducing microorganisms involved in anaer-
bolic benzene degradation. ISME J 2007;1:
643–653.

Labinger JA, Bercaw JE: Understanding and ex-
417:507–514.

Lack A, Fuchs G: Evidence that phenol phospor-
ylation to phenylphosphate is the first step in
aerobic phenol metabolism in a denitrify-
ing Pseudomonas sp. Arch Microbiol 1994;
161:132–139.

Lahme S, Harder J, Rabus R: Anaerobic degrada-
tion of 4-methylbenzoate by a newly isolated
denitrifying bacterium, strain pMbN1. Appl
Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 1993;159:336–344.

