The Effectiveness of Inputs in Primary Education: Insights from Recent Student Surveys for Sub-Saharan Africa

SEBASTIAN FEHRLER*, KATHARINA MICHAELOWA* & ANNIKA WECHTLER**
*University of Zurich, Switzerland, **Hamburg Institute of International Economics (HWWI), Germany

ABSTRACT With SACMEQ and PASEC there are now two large data bases available on student achievement, socio economic background and school and teacher characteristics in both anglophone and francophone sub Saharan Africa. A joint analysis of PASEC and SACMEQ in a common education production function framework allows us to estimate the impact of educational inputs on student achievement in 21 sub Saharan African countries and to compare our results with those of earlier empirical studies for education systems in Africa and other world regions. In our analysis we focus on school equipment, teacher quality and class organisation. The issue of teacher and student incentives cannot be adequately addressed with the given data. Our results are based on a traditional retrospective analysis of student achievement in PASEC and SACMEQ countries. In contrast to the 'nothing works' result from most industrialized countries' studies we find robust positive correlations of achievement test scores and the possession of textbooks and negative correlations with teaching in shifts. The most striking result is the weak or even absent correlation of achievement test scores and teacher education and professional training. However, some differences between francophone and anglophone education systems can be observed in this context if differences in the sampling methodology are duly taken into account.

1. Introduction
The increasing availability of student survey data, the development of new statistical and econometric methods and the expansion of computing capacities has led to a huge increase in scientific evaluations of the determinants of education quality in recent years. Education quality is thereby measured in terms of student achievement on standardised tests, which reflects the cognitive knowledge acquired through the
education process. In line with international policy priorities as codified in the Education for All (EFA) objectives and the Dakar Framework for Action, for sub-Saharan Africa, evaluation efforts currently concentrate on the primary level. In addition to various national level evaluations, three programmes have been launched on a larger scale: together, the UNESCO/UNICEF Monitoring Learning Achievement (MLA), the Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) and the Programme d’Analyse des Systèmes Éducatifs de la CONFEMEN (PASEC) now cover most countries on the continent. General information on these programmes is available from Chinapah (1997) for MLA, Ross (1998) and Murimba (2005a,b) for SACMEQ, and PASEC (1999) and CONFEMEN (2008) for PASEC.

SACMEQ and PASEC are of particular interest because they use comparable (or identical) tests in all their countries, which allows us to jointly analyse different country cases as well as to draw comparisons across countries. While the comparison of test items and thus a direct comparison of achievement levels across programmes is not yet possible, the relationship between inputs and outcomes can be compared. A joint analysis of PASEC and SACMEQ data in a common education production function framework allows us to estimate the impact of educational inputs on student achievement in 22 sub-Saharan African countries, and to compare our results with those of earlier empirical studies for education systems in Africa and other world regions. The aim is to see which inputs work in the production of primary education and might, therefore, be considered for policy interventions. As SACMEQ data have only recently become publicly available, to our knowledge, this study presents the first attempt to jointly explore results for francophone and anglophone Africa in a common education production function framework. An education production function defines the structural relation between inputs and achievement (skills learned). In general it can be depicted as (following Glewwe and Kremer, 2006):

\[A = a(S, Q, C, H, I) \]

with \(A \) denoting achievement and \(S \) years of schooling. \(Q \) is a vector of school and teacher characteristics, \(C \) a vector of child characteristics, \(H \) a vector of household characteristics (socio-economic) and \(I \) a vector of inputs controlled by the parents (such as help with homework). Experimental and quasi-experimental evaluations are generally better suited to identify causal relationships but we still believe in the value of showing correlation patterns for a huge dataset with a much wider coverage than randomised experiments such as those run by the MIT. Robust correlations can then be cross-checked using other methods than retrospective regression analysis.

II. The Impact of Traditional School Resources on Student Learning

There are a considerable number of studies on the impact of traditional school resources on student learning including excellent literature reviews such as UNESCO (2004), Hanushek (2003), and Glewwe and Kremer (2006). As outlined in most of the literature reviews, generally, the results of different empirical studies are highly inconsistent, and the overall picture is rather bleak in terms of truly promising policy
options. In fact, many of the studies raise doubts about the relevance of traditional inputs in the schooling production function altogether (Hanushek, 2003; Glewwe et al., 2004; Glewwe and Kremer, 2006). Although there have been large improvements in the levels of school resources around the world, no corresponding improvement of student learning could be observed. As Hanushek puts it:

Class sizes have fallen, qualifications of teachers have risen, and expenditures have increased. Unfortunately, little evidence exists to suggest that any significant changes in student outcomes have accompanied this growth in resources devoted to schools. (Hanushek, 2003: F67)

This is especially true for countries in which the level of school resources is already high. However, one should expect the relationship between resources and outcomes to be much clearer for developing countries as the low initial level of resources makes it more likely that additional inputs have a significant effect. Indeed, looking at 96 production function estimates in less developed countries reveals a somewhat stronger support for the expected positive relationship between inputs and achievement (Hanushek, 2003: F84). Analysing 60 studies of education in developing countries, Fuller (1987) also found that resources were more important determinants of students’ achievement in developing countries than in industrialised countries. Fuller and Clarke (1994) reinforce this conclusion taking into account the cross-country differences in socio-economic and cultural settings even within developing countries.

We conclude that despite rather discouraging evidence on the international level, for developing countries in general, and for most of the very poor sub-Saharan African countries in particular, school resources still play an important role in improving education quality. However, even for these countries, the estimated relationship between school resources and student achievement is far from consistent across studies, so that there is no easy recipe for successful policy interventions.

III. Data and Econometric Methods

In this paper we will examine the evidence from PASEC and SACMEQ data, using a common education production function framework, to assess whether the results from the literature are consistent with results from this unique dataset covering a large part of sub-Saharan Africa. To start with, let us discuss the data coverage and sampling methods as well as our econometric approach.

Data

The SACMEQ data base includes more than 40,000 sixth grade students from 14 countries: Botswana, Kenya, Lesotho, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania (mainland and Zanzibar are treated like two distinct countries), Uganda and Zambia. The PASEC data used here includes more than 17,000 fifth grade students and the same number of second grade students from eight countries: Burkina Faso, Cameroon, Côte d’Ivoire, Madagascar, Mali, Niger, Senegal and Togo. All surveys were carried out between
1995/1996 and 2001/2002. For both sets of countries, we estimate the effect of various policy options on student test scores in literacy and mathematics. The policy options discussed include the provision of better learning materials (for example textbooks, teacher manuals), teacher qualifications and the organisation of student flows. All effects are calculated after controlling for the influence of student socio-economic background, for example possessions at home, mother’s and father’s education, language spoken at home and so forth.

Some conceptional differences in PASEC and SACMEQ evaluation methodology and survey design may have a non-negligible impact on estimates of regression coefficients and standard errors, as well as on their interpretation.

Only SACMEQ includes student weights, which can be used in the regression in order to ensure that the overall results are truly representative. Most PASEC surveys are designed to be representative surveys of schools, but it is not taken into account that the probability of any particular student to be part of the sample also depends on the size of the school. For Togo, Mali and Niger, they are not representative for schools, either, because they were designed to study specific policy measures (that is contract teachers and double shift teaching). This may result in some selection bias, and there are no weights to adjust for the non-random selection ex-post.

A more obvious difference between PASEC and SACMEQ is their focus on different grades. Clearly, differences must be expected between students’ learning in the early grades (like PASEC second grade) and later grades. However, the differences between PASEC fifth grade and SACMEQ sixth grade appear to be less substantial. As drop-out rates are higher in PASEC than in SACMEQ countries sampling students from a one-year higher grade in SACMEQ may even make the samples more comparable. Another concern could be that in many countries, sixth grade is the last year of primary education, which may make it an atypical year, difficult to compare with other years. However, it turns out that in most SACMEQ countries, primary schooling includes one more year and ends only after seventh grade. Thus in this respect, there does not seem to be a major problem for comparisons between PASEC and SACMEQ.

Regression Methodology

For both sets of countries, the dependent variable used in our regressions is the test score in literacy and mathematics. This test score is coded on a scale with mean 500 and standard deviation 100 for SACMEQ. For PASEC it is the simple percentage of correct answers (0–100%). The distribution of this variable is characterised by the following means and standard deviations:

- fifth grade French: mean 41.7 per cent, standard deviation 18.2 per cent
- fifth grade maths: mean 43.9 per cent, standard deviation 18.2 per cent
- second grade French: mean 52.2 per cent, standard deviation 25.3 per cent
- second grade maths: mean 50.5 per cent, standard deviation 24.3 per cent.

The distribution of the scores across the countries is presented in the Appendix (Figure 1). All countries within each country group (SACMEQ/ PASEC) are
considered jointly in a single regression. This has the considerable advantage that, due to the high total number of observations, even very small effects can be distinguished. Country differences are captured by country fixed effects.

We use two different econometric models to estimate the education production functions. For both SACMEQ and PASEC, model type A is the usual hierarchical linear (or multi-level) model with school random effects (for textbook expositions see for example Raudenbush and Bryk, 2002 or Goldstein, 2003). Estimations are carried out with generalised least squares (GLS) with the exception of SACMEQ regressions because the availability of sampling weights makes maximum likelihood estimation (MLE) computationally more attractive in the multi-level framework.

Model A has the advantage of providing a clear distinction between the explanations of the variance within and between schools. However, the true standard errors may be underestimated if sub-clusters exist (such as classes within schools for SACMEQ or groups of students living in the same area or doing their homework together), which lead to a variance structure different from the one explicitly specified. As a robustness check, we therefore introduce a model type B using the Stata survey sampling routine. For details, see Michaelowa and Wechtler (2006). For a comparison of the different methodologies and their results, see Brown and Micklewright (2004).

More Robustness Checks

In PASEC students were tested twice, once at the beginning and once at the end of the year. Before including a pre-test score in a regression function one should consider the following. First, it is a relevant control variable for general ability and the influence of student background which might not have been fully captured otherwise. Its inclusion can avoid (or reduce) omitted variable bias when estimating the effects of relevant policy measures. Second, it changes the interpretation of all coefficients as the control for the score at the beginning of the term implies that the coefficients of all other variables reflect the influence on students’ progress over the year, rather than on students’ final skills. This is why econometric models including a pre-test score are also known as ‘added value models’ (Hanushek, 1986). And third, many teacher and classroom related variables change over the years, so that a precise estimation of their impact is only possible for the ongoing term. For example, the student may have got a high performing teacher for the current term, but had bad teachers before. Now since the overall skills of this student are influenced by all these teachers, the positive influence of the last teacher will be blurred in any model in which initial student skills (before they got this teacher) cannot be taken into account. As we want to compare results between SACMEQ and PASEC countries and pre-tests are only available for PASEC, the regressions including pre-tests serve as robustness checks of the correlation found in the other regressions.

Alan Krueger (1999) demonstrated that such added value models do not solve all problems. In his study on the effect of changes of class size, he shows that there exists a rather big initial level effect at the first grade and afterwards only small effects of small class sizes. The level effect can not be observed in a value added model. We find
it very unlikely, though, that most inputs work only in grade one and afterwards differences in inputs play a much smaller role. Therefore, we believe that this shortcoming is not too important and that an added value specification is a valuable robustness check.

To check for selection bias due to the unrepresentative sampling in Mali, Niger and Togo we estimated all PASEC regressions without those countries but found almost exactly the same results.

To check for the effect of private schools which might have different production functions we ran the SACMEQ regressions without private schools. Again the results were almost unaffected by the exclusion. For PASEC the school type is not recorded for some countries and not consistently for others. Therefore, we could not exclude private schools here to check for robustness.

As some regressors such as double shift teaching, parental help with homework and inspector visits to the school are arguably endogenous we also ran regressions without these three variables and found again no substantial changes in the other coefficient estimates.

In addition to these robustness checks we looked at all relevant coefficients discussed in the next section in single country regressions for all countries. The results are reported in the Appendix (Tables A3 and A4).

IV. Econometric Evidence for Francophone and Anglophone Africa (PASEC and SACMEQ)

The Appendix includes two detailed tables with regression results for literacy and mathematics respectively (Tables A1 and A2). The following discussion concentrates on the most relevant results (Tables 1–4). Most results are in line with the findings for developing countries in general and are also discussed in Michaelowa and Wechtler (2006).

V. Traditional Policy Options

Textbooks, Wall Charts, Other Equipment

We find significant effects of textbook possession for maths in all grades and for French in second grade in the PASEC sample. The magnitude of the estimated effects ranges from 3.4 per cent of a standard deviation to 14.1 per cent. The higher coefficient for textbooks in French in second grade can mean that it is more important to personally possess a book in lower grades. One could imagine that in lower grades, being able to take the book back home for first reading practice is more relevant than in higher grades. However, high coefficient estimates and significant results for individual textbook possession may also be an artefact of the lack of two relevant control variables – parents’ literacy and books at home – which were not included in the questionnaire for second grade students. As the expected correlation between these variables and textbook availability is positive, second grade coefficients for textbooks are likely to be biased upwards. Moreover, the generally lower level of initial textbook availability in earlier grades may lead to higher coefficients if there are diminishing returns to overall textbook coverage (for a
more general discussion of such nonlinearities see Frölich and Michaelowa, 2005). Thus the distinction between grade levels is more complex here than it might seem at first glance.

Textbooks are also considered for spill-over effects included in the effect of the share of pupils with a textbook in the class. The coefficient for the variable which indicates with how many classmates a student has to share a textbook in the SACMEQ sample is significant and positive at the 5 per cent level. The insignificant coefficients for the share of classmates with textbook in the PASEC sample are rather surprising taking into account the strong peer-effects estimated in an earlier non-parametric study on a smaller sample from Burkina Faso, Cameroon, Senegal, Cote d'Ivoire and Madagascar (Frölich and Michaelowa, 2005). Interaction of class share and personal possession might be a reason for these results as both variables are included, although the specification chosen seems to be a good approximation of the functional form found in the Frölich and Michaelowa study. Nevertheless the importance of availability of books is clearly shown.

A question about wall charts was asked only in SACMEQ countries. The coefficient estimate is positive, as expected, but remains insignificant. Teacher manuals are significant in some regressions (only for SACMEQ) and then lead to a positive effect of up to 6.7 per cent of a standard deviation in test scores. For PASEC, they become significant in different regression specifications with a lower number of general equipment variables and for a different set of countries (not shown here). But results are clearly less robust than for textbooks.

All in all, these results appear to be consistent with earlier studies for developing countries, which show a somewhat positive, but moderate impact of learning materials, especially textbooks (for a review, see for example Mingat, 2003). We spent much time trying to find appropriate indicators using different combinations of classroom furnishings, school facilities and basic equipment, such as chalk and blackboards. The final specification presented in Tables A1 and A2 includes a variety of separate indicators for individual items and facilities, a joint indicator for higher technology equipment, such as computers, television and video projectors, an indicator for the availability of electricity and an indicator for the general condition of the school building.

At first glance, looking at SACMEQ regressions, our results seem to present a strong evidence for the relevance of expensive electric equipment. The indicator for higher technical equipment is strongly significant and indicates that adding any high tech item to the existing equipment of a school raises student achievement by more than 12 per cent of a standard deviation. However, this variable must be considered with caution, as it may well suffer from an endogeneity problem: as high tech equipment is an easily visible signal of a rich school environment, wealthy parents and parents with particularly talented children may select these schools in the first place. As most parents can be expected to make their school choice only once (that is at the beginning of primary education), controlling for the initial score at the beginning of the year, as possible with PASEC data, will eliminate at least part of this selection effect. Unfortunately, the high tech indicator is not available in PASEC, but electricity, a strongly correlated variable, is. In PASEC, the effect of electricity is significant at the 10 per cent level at second
grade in French, but only as long as the pre-test score is not included into the regression. Controlling for the pre-test scores leads to a jump of all p-values from below 0.2 to over 0.7.

In SACMEQ, the availability of a school or classroom library also appears to be significant, whereby the existence of the library in the classroom itself seems to be more directly beneficial. Not surprisingly, results for reading are higher than for maths and make up 3.9–9.7 per cent of a standard deviation in literacy scores. The library result is also reflected in two of the PASEC regressions (grade 2). One might take this as yet another indication of the relevance of books in the learning process. Note that libraries also offer a compensation for a scarcity of reading material at home. The variable ‘books at home’, which is introduced as one of the control variables for students’ family background, is strongly significant in all literacy and two of four mathematics regressions for PASEC. For SACMEQ the variable ‘number of books at home’ is significant in all regressions. This reinforces the potential relevance of libraries in general, be it at classroom or school level, in the village or town, or in the more flexible form of a ‘rolling library’, which appears to be a good solution for scarcely populated rural areas.

Nevertheless, it should be noted that coefficients for school libraries shrink considerably and become insignificant when the pre-test scores are controlled for. This suggests that, just as in the case of technical equipment, a self-selection process of good performers into well-equipped schools may bias the results.

<table>
<thead>
<tr>
<th>Table 1. Books and maths</th>
</tr>
</thead>
<tbody>
<tr>
<td>each column shows results of 2 regressions</td>
</tr>
<tr>
<td>PSC 5th</td>
</tr>
<tr>
<td>textbook possession</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
<tr>
<td>library</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
<tr>
<td>books at home</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
</tbody>
</table>

Note: PSCp 5: PASEC 5th grade with pretest; SCMQ 6: SACMEQ 6th grade; indicators differ between PASEC and SACMEQ (see text).

<table>
<thead>
<tr>
<th>Table 2. Books and literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>each column shows results of 2 regressions</td>
</tr>
<tr>
<td>PSC 5th</td>
</tr>
<tr>
<td>textbook possession</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
<tr>
<td>library</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
<tr>
<td>books at home</td>
</tr>
<tr>
<td>Mag in % of s.d.</td>
</tr>
</tbody>
</table>

Note: PSCp 5: PASEC 5th grade with pretest; SCMQ 6: SACMEQ 6th grade; indicators differ between PASEC and SACMEQ (see text).
A similar argument applies to the interpretation of the coefficient for the condition of school buildings. The condition of school buildings – only included in the SACMEQ analysis – reveals a strong and statistically significant positive effect: a change from extremely bad to extremely good conditions leads to an increase of 1.7–2.4 per cent of a standard deviation of student achievement. However, just as for technical equipment and school libraries, the condition of the school building is one of the easily observable characteristics parents may base their school choice on. As the variable is not included in the PASEC analysis, it could not be tested whether the coefficient estimates remain significant when initial knowledge is controlled for. When related variables providing information about the material the classroom is built with are included in individual PASEC country studies, results generally do not show any relevant positive role of concrete relative to other materials (see for example PASEC, 2009).

Otherwise, very few significant effects can be reported. A certain positive effect of the availability of blackboard and chalk can be observed for mathematics in one SACMEQ regression. For PASEC, the estimates are insignificant. Toilets, health equipment and fresh water do not show a significant positive effect, either. All in all, evidence for relevant effects of school equipment is rather weak, especially when considering potential selection bias and the more reliable estimates controlling for pre-test scores.

Class Size, Student-flow, Teacher Qualification, Knowledge and In-service Training

Results with respect to class size show the typical insignificant or very small impact on student achievement (for a literature review and discussion of studies on class size see for example Hanushek, 1998). In order to take into account possible threshold effects or other non-linearities, the variable is entered into the regression in a quadratic form. In the case of SACMEQ, where the coefficients are significant, the analysis indicates that negative effects start to become evident beyond a class size of 60 students. This result corresponds to earlier results for PASEC in a regression specification for five countries (Michaelowa, 2001). In the regressions specified here, class size is insignificant for the PASEC countries. Another study based on PASEC panel data for students in Senegal, controlling for student fixed effects, does not find any negatively significant effect either (Fehrler, 2008).

Teacher qualification is a different issue. For PASEC, neither the indicator of teachers’ educational attainment (academic qualification), nor the indicator for professional training are significant at the 5 per cent level. In SACMEQ, however, the academic qualification is clearly significant and the professional qualification is significant in all but one regression. Coefficients for academic qualification indicate that the students gain between 1.8 and 4.1 per cent of a standard deviation in scores when the teacher has attained a one step higher level of education, for example lower secondary attainment instead of primary attainment only, or some tertiary instead of upper secondary only.

It is interesting to note the differences between SACMEQ and PASEC countries here. Although the indicator used is almost identical in both surveys, in PASEC, it is much more difficult to find the expected positive results. The problem appears to be that the indicators of both professional training and educational attainment only
capture duration while no information is available on quality. Obviously, depending on quality and practical relevance, two different courses of the same duration may have a totally different impact on actual teaching skills. It can be shown that in PASEC, there is no significant positive correlation between the duration of teachers’ educational attainment and teachers’ knowledge of the subject matter. This implies that the low coefficient estimates for attainment should not be interpreted as an indication of a low impact of increased subject matter knowledge, but rather as an indication of the low quality of the education the teachers themselves received when they attended school (Michaelowa, 2003).

To measure actual teacher knowledge, PASEC uses an exercise for teachers in which they have to count the mistakes in a fictitious student dictation. In SACMEQ, a different and exceptionally precise indicator of relevant teacher knowledge is available: teachers were themselves asked to take the students’ tests and marked on the same scale. The average teacher score in literacy is more than two standard deviations above average student scores and is reached only by about 2 per cent of the students.

As opposed to PASEC, it can be shown that for SACMEQ countries the correlation between educational attainment and teacher test scores is significant, albeit even here, less pronounced than one might have expected. Estimated correlation coefficients are 0.21 for literacy, and 0.32 for maths. Since we can find a significant correlation only for SACMEQ countries, this may indicate that, on average, the quality of secondary and tertiary educational institutions attended by (future) teachers is better in anglophone than in francophone Africa, at least in the core subjects of literacy and mathematics. This could explain the differing results on the relevance of the academic qualifications. One should be cautious, however, when interpreting these results, because the indicator of teachers’ subject matter knowledge in PASEC is much less reliable than the one used in SACMEQ. Moreover, neither in PASEC, nor in SACMEQ are the indicators for teachers’ subject matter knowledge available for all countries. This is also the reason why these indicators have not been included directly in our regressions in Tables 5 and 6.

In any case, it should be noted that the coefficient estimates of 1.8–4.1 per cent of a standard deviation for a full level of education (like the whole upper secondary cycle) are not very high. While the linear specification of educational duration used here does not indicate any optimal cut off point, some prior research on PASEC indicates that this may be below the A-levels or baccaulauréat (successful upper secondary completion) (Bernard et al., 2004).

It has been shown that teachers holding a baccalauréat are often less motivated than their peers with lower educational attainment, possibly because their higher expectations with regard to their future jobs are not met by the reality of their situation (Michaelowa and Wittmann, 2007).

As mentioned above, the differences in the significance (or lack of significance) of SACMEQ and PASEC can be observed not only for teachers’ academic qualification, but also – in a similar way – for their professional training. In this context, there is no way to directly show from the data that this may be related to a different quality of the courses offered. The correlation between teachers’ professional training and subject matter knowledge is not very strong, even in SACMEQ countries, but this is plausible even for very good training modules since professional training could focus on pedagogical rather than academic skills. Most probably, the reason for difficulties in finding significant results in overall PASEC
regressions is that professional qualifications vary widely across countries (even within the francophone education systems) and are more or less effective, so that it is very difficult to capture their overall effect.

Individual country estimates for PASEC have often shown the relevance of professional training for student achievement (see, in particular, PASEC, 2004) and we also find a few significant coefficients in our single country checks (see Tables A3 and A4 in the Appendix). In their individual country regressions for SACMEQ, Lee et al. (2005) construct a joint estimate for academic and professional qualification, so that results are not directly comparable. Nevertheless, they also find that the effect varies widely between countries. A positively significant impact is only found for about one third of the countries covered (and insignificant effects otherwise). In this context, it may be argued that duration (the only available measure for professional training) is less relevant than content (Michaelowa, 2003; Bourdon et al., 2006). If the latter could be adequately measured, we would probably face much less variation of results between individual countries and between country groups.

Similar reasoning applies to in-service training (see for example Nguyen et al., 2005: 40). The latter is negatively significant in SACMEQ. This is a counter-intuitive result also found for individual country cases in francophone Africa, and often related to training sessions during class hours which then reduce effective teaching time (Bernard and Michaelowa, 2006). It should also be noted, however, that in SACMEQ, the in-service training variable is based only on teachers’ own subjective assessment of the efficacy of these courses. In PASEC regressions, the variable reflects the number of courses attended per year, and teacher absence can be directly controlled for (in SACMEQ, only an indirect school level variable is available). In this setting, in-service training has a positive coefficient, which is significant for fifth grade French and implies an improvement of up to 6.6 per cent of a standard deviation in students’ scores for each additional training seminar the teacher has attended per year (during the last five years).

Student Flow Organisation

Coming to the organisation of student flows, our analysis confirms the negative effect of double shift teaching known from other studies (for example Michaelowa, 2001). As the control for pre-test scores generally reduces the overall effect (and makes it statistically insignificant in some regressions), parts of the effect seem to be related to a selection of bad performers in double-shift classes. However, after controlling for initial knowledge, the negative coefficients remain and still indicate losses of often more than 10 per cent of a standard deviation in student test scores for double-shift classes. As opposed to earlier analysis, we do not find any evidence that this effect is substantially weaker in second grade.

SACMEQ regressions for sixth grade only indicate losses of up to 5.8 per cent of a standard deviation in the case of double-shift organisation, and the results are significant only in one regression (even at the 10% level). However, if we look again at the individual country regressions carried out by Lee et al. (2005), we find that in some countries, this variable does not seem to be relevant in current education practice. In fact, the authors include it only in 9 out of 14 regressions, four of which show the expected significant negative effect, sometimes with extremely high coefficients corresponding to up to about 30 per cent of a standard deviation of (international) student scores (Kenya and...
Zambia). In our single country regressions the coefficient is significant in about one third of the SACMEQ countries (see Table A4 in the Appendix).

As opposed to double-shifts, no significant effect in either direction can be discerned for multi-grade teaching. Unfortunately, this variable does not exist in the SACMEQ database. The reason might be that in SACMEQ, very small schools for which this system is generally most relevant have been excluded from the target population.

Institutions and Incentive Structures

While the traditional discussion of school inputs focuses on physical goods such as teachers, books, buildings, desks and benches, the ‘second generation’ educational production function literature focuses on more subtle inputs such as accountability, effort and motivation. The idea is that much of the unexplained variation in student achievement may be brought about by differences in these inputs that have previously been largely neglected by the economic literature. Obviously, their relevance has been widely discussed by educational scientists, sociologists and psychologists, but only in recent years have these discussions started to influence the input effectiveness literature.

<table>
<thead>
<tr>
<th>Table 3. Teacher training, student flow and maths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each column shows results of 2 regressions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PSC 5th</th>
<th>PSCp 5</th>
<th>SCMQ 6</th>
<th>PSC 2</th>
<th>PSCp 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>teacher acad</td>
<td>pos sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qualification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>1.8/3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teacher training</td>
<td>pos sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>1.9/2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teaching in shifts</td>
<td>neg sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>23.5/24.7</td>
<td>14.9/16.2</td>
<td>13.2/16.7</td>
<td>12.3/13.9</td>
</tr>
<tr>
<td>multigrade</td>
<td>sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teaching</td>
<td>Mag in % of s.d.</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: PSCp 5: PASEC 5th grade with pretest; SCMQ 6: SACMEQ 6th grade; indicators differ between PASEC and SACMEQ (see text).

<table>
<thead>
<tr>
<th>Table 4. Teacher training, student flow and literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each column shows results of 2 regressions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PSC 5th</th>
<th>PSCp 5</th>
<th>SCMQ 6</th>
<th>PSC 2</th>
<th>PSCp 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>teacher acad</td>
<td>pos sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qualification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>2.3/4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teacher training</td>
<td>pos sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>in 1 reg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teaching in shifts</td>
<td>neg sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mag in % of s.d.</td>
<td>19.8/20.8</td>
<td>15.1/17</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>multigrade</td>
<td>sig at 10%</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teaching</td>
<td>Mag in % of s.d.</td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: PSCp 5: PASEC 5th grade with pretest; SCMQ 6: SACMEQ 6th grade; indicators differ between PASEC and SACMEQ (see text).
VI. Conclusions

Based on our analysis of student achievement data from 14 SACMEQ countries and eight PASEC countries, we derive several conclusions about the efficacy of a number of inputs in schooling. With the methodology used, causality is not always identifiable. However, our findings and results from other studies point into the following direction.

Pedagogical resources, especially textbooks for the core subjects of reading and maths, can still be considered as effective inputs. If it is not feasible to provide books for all students, one book may be provided only to every second student, especially in higher grades where taking the book back home does not seem to be as important as for very young students.

With respect to teacher education and training, the focus should be on quality rather than duration. In anglophone Africa, where the duration of formal education and teachers' subject matter knowledge are much more clearly correlated than in francophone Africa, longer education for teachers significantly enhances student learning. However, the effect is quite small. Similar results are found for pre-service and in-service training.

Finally, it appears relevant to ensure the maximum use of formal instruction time for effective teaching. Double shift teaching seems to have a detrimental impact in this respect. As there is ample evidence for a rather modest negative impact of high student–teacher ratios, double shift teaching should generally be avoided.

Effective teaching time can also be increased by improving students' attendance. Apart from the well-known requirement of adjusting the academic year to harvesting seasons, attendance can be increased by simple health care measures. In this context, de-worming has been shown to be particularly effective (see for example Kremer and Miguel, 2001). And last but not least, effective teaching time can be increased by reducing teachers' absences. In some cases, simple administrative measures like the reorganisation of teacher remuneration (so that teachers do not need to collect their pay from a far away district officer) may be very effective. In general, however, more effective control mechanisms seem to be required.

Another relevant issue, not addressed in this study but in many others, appears to be repetition. Repetition increases the overall number of students the system has to deal with and, therefore, reduces the amount of other inputs, like textbooks for example, per student. Moreover, repetition increases early drop-out. Finally, the effects of repetition on student learning have consistently been shown to be negative, rather than positive, at least in the long run.5
More research is needed to understand the role of teacher education and training for school quality in Africa. There seems to be much room for improvement in this area, especially when focusing on the content and quality of the training programmes. Moreover, research on teacher and student incentives might help to derive more insights for policy-makers. Nevertheless, traditional inputs like school books still appear to be promising options to improve school quality.

Acknowledgements

The authors wish to thank Jean Bourdon for his thoughtful comments, and for his invaluable help with providing access to some of the relevant literature, as well as with data preparation and discussion. Moreover, they are grateful to Alain Patrick Nkengne Nkengne, Jean-Marc Bernard, Adriaan Verspor, Marta Encinas-Martín for useful suggestions, and to Mioko Saito for her support with the interpretation of some of the SACMEQ variables.

Notes

2. More details regarding differences in sampling are discussed in the Appendix.
3. These robustness checks are not reported here, but results are available from the article’s Online Appendix.
4. Even if an impact of educational attainment on student achievement was found, a policy to increase teacher education would have to be considered with care as costs in terms of salaries sharply increase with the completion of the upper secondary final examination. In Burkina Faso in 1999, for example, teachers with a baccalauréat earned 28 per cent more than their colleagues without a baccalauréat (averaged over the income groups for different final marks and tenure). In absolute numbers the difference of the incomes (again averaged over income groups) was 380 Euros per year (Ministère de l’économie et de finance BF, 1999).
5. See for example Bernard et al. (2005) on the effects of grade repetition in Africa.

References

Appendix

A1 Distribution of student outcomes across countries

![Boxplots of student outcome measures across countries.](image)

Figure 1. Boxplots of student outcome measures across countries.

Note: As described in the section on data and econometric methods student outcomes are measured on different scales in Programme d’Analyse des Systèmes Éducatifs de la CONFEMEN (PASEC) and Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ). The test score for SACMEQ is coded on a scale with mean 500 and standard deviation 100. For PASEC it is the simple percentage of correct answers (0-100%). Countries are ordered by the median.
A2 Regression results

Table A1 displays the results for literacy and Table A2 presents the results for mathematics. Each of the two tables includes 10 regressions, two for SACMEQ (sixth grade only, model A and B), four for PASEC fifth grade (model A and B, with and without pre-test) and four for PASEC second grade. Bold coefficients are significant at the 5 per cent level.
<table>
<thead>
<tr>
<th>Table A1. Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACMEQ</td>
</tr>
<tr>
<td>PASEC</td>
</tr>
<tr>
<td>Variable and Range modifications</td>
</tr>
<tr>
<td>Initial score at the beginning of term (pre-test score)</td>
</tr>
<tr>
<td>Learning materials</td>
</tr>
<tr>
<td>Pupil possesses a textbook for reading</td>
</tr>
<tr>
<td>Availability of reading book (0 = none, 0.5 = shared with several peers, 1 = own book)</td>
</tr>
<tr>
<td>share of books among the pupil's classmates</td>
</tr>
<tr>
<td>Class is equipped with wall chart</td>
</tr>
<tr>
<td>Teacher has access to a teacher's manual for reading</td>
</tr>
<tr>
<td>School equipment</td>
</tr>
<tr>
<td>Condition of school building (1 = needs complete rebuilding - 5 = good condition)</td>
</tr>
<tr>
<td>School is equipped with electricity</td>
</tr>
<tr>
<td>School is equipped with a library</td>
</tr>
<tr>
<td>School is equipped with a first aid kit</td>
</tr>
<tr>
<td>school has access to water</td>
</tr>
<tr>
<td>Pupil-toilet ratio</td>
</tr>
<tr>
<td>toilet available (dummy)</td>
</tr>
<tr>
<td>School is equipped with a computer</td>
</tr>
<tr>
<td>0.52</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SACMEQ</th>
<th>Regr. 1</th>
<th>Regr. 2</th>
<th>Regr. 3</th>
<th>Regr. 4</th>
<th>Regr. 5</th>
<th>Regr. 6</th>
<th>Regr. 7</th>
<th>Regr. 8</th>
<th>Regr. 9</th>
<th>Regr. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English (1)</td>
<td>English (1)</td>
<td>French</td>
<td>French</td>
<td>French</td>
<td>French</td>
<td>French</td>
<td>French</td>
<td>French</td>
<td>French</td>
</tr>
<tr>
<td></td>
<td>grade 6</td>
<td>grade 6</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
</tr>
</tbody>
</table>

Variable and Range:

- Coef. P

- z
- t
- z
- t
- z
- t

<table>
<thead>
<tr>
<th>School is equipped with technical resources: radio, tv, vcr, computer</th>
<th>14.08</th>
<th>0.00</th>
<th>12.72</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class is equipped with library</td>
<td>9.65</td>
<td>0.00</td>
<td>3.54</td>
<td>0.10</td>
</tr>
<tr>
<td>Classroom is equipped with blackboard and chalk (or equivalent alternatives)</td>
<td>-6.92</td>
<td>0.01</td>
<td>-5.50</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Teacher numbers and qualification

- Class size | 3.98 | 0.00 | 0.84 | 0.01 |
- Class size squared | -0.03 | 0.00 | -0.01 | 0.01 |
- Teacher academic qualification (1 = primary - 6 = tertiary) | 2.30 | 0.00 | 4.11 | 0.00 |
- Teacher professional qualification (1 = no teacher training - 6 = three years or more) | 2.32 | 0.00 | 1.05 | 0.26 |
- Assessment of the efficacy of in-service training by teacher (1 = no such training received - 5 = very effective) | -1.83 | 0.00 | -1.55 | 0.01 |
- Organization of student flows and study time | -2.93 | 0.45 | -8.83 | 0.10 |

| Assumption of the efficacy of in-service training by teacher | 1.07 | 0.02 | 1.20 | 0.00 | 0.63 | 0.09 | 0.71 | 0.05 | 0.55 | 0.40 | 0.30 | 0.45 | 0.68 | 0.22 | 0.66 | 0.50 |
|-----------------|--------|-------|--------|--------|
| Average number of in-service training courses per year (during the five years?) | -3.79 | 0.00 | -3.80 | 0.01 | -3.10 | 0.00 | -2.75 | 0.02 | -2.19 | 0.17 | -1.21 | 0.43 | -1.30 | 0.34 | -0.73 | 0.39 |

(continued)
Table A1. (Continued)

<table>
<thead>
<tr>
<th>Variable and Range modifications</th>
<th>SACMEQ Regr. 1</th>
<th>SACMEQ Regr. 2</th>
<th>PASEC Regr. 3</th>
<th>PASEC Regr. 4</th>
<th>PASEC Regr. 5</th>
<th>PASEC Regr. 6</th>
<th>PASEC Regr. 7</th>
<th>PASEC Regr. 8</th>
<th>PASEC Regr. 9</th>
<th>PASEC Regr. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-grade teaching</td>
<td></td>
</tr>
<tr>
<td>pupil repeated current grade (3)</td>
<td>−11.16 0.00</td>
<td>−12.11 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pupil’s overall grade repetition</td>
<td>−7.67 0.00</td>
<td>−10.83 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pupil is never missing school</td>
<td>16.15 0.00</td>
<td>14.81 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pupil has no health problems</td>
<td>−0.12 0.98</td>
<td>−3.92 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teacher absenteeism (1 = never - 5 = often)</td>
<td>−6.06 0.01</td>
<td>−5.81 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teacher absenteeism (1 = never - 5 = often)</td>
<td>−3.08 0.09</td>
<td>−3.47 0.07</td>
<td>−3.3 0.08</td>
<td>−0.21 0.07</td>
<td>−0.14 0.22</td>
<td>−0.2 0.23</td>
<td>0.28 0.12</td>
<td>0.24 0.24</td>
<td>0.22 0.15</td>
<td>0.17 0.30</td>
</tr>
<tr>
<td>number of lost official school days in the previous school year</td>
<td>0.06 0.63</td>
<td>0.06 0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>institutional variables</td>
<td></td>
</tr>
<tr>
<td>school type (1 = government, 2 = private)</td>
<td>9.60 0.02</td>
<td>7.13 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parents’ or community’s contribution to class equipment (1 = very bad - 8 = very good)</td>
<td>2.14 0.01</td>
<td>2.28 0.01</td>
<td>0.29 0.08</td>
<td>0.32 0.06</td>
<td>−0.24 0.09</td>
<td>−0.29 0.05</td>
<td>−0.35 0.77</td>
<td>−0.34 0.77</td>
<td>−0.06 0.95</td>
<td>−0.14 0.89</td>
</tr>
</tbody>
</table>

(continued)
Table A1. (Continued)

<table>
<thead>
<tr>
<th>SACMEQ</th>
<th>Regr. 1</th>
<th>Regr. 2</th>
<th>PASEC</th>
<th>Regr. 3</th>
<th>Regr. 4</th>
<th>Regr. 5</th>
<th>Regr. 6</th>
<th>Regr. 7</th>
<th>Regr. 8</th>
<th>Regr. 9</th>
<th>Regr. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English (1) grade 6</td>
<td>English (1) grade 6</td>
<td></td>
<td>French grade 5</td>
<td>French grade 5</td>
<td></td>
<td>French grade 5</td>
</tr>
<tr>
<td>Parents’ or community’s payment of exam fees, additional teacher salaries or bonuses (0 = none-0)</td>
<td>0.54</td>
<td>0.61</td>
<td>0.34</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher works on a non-civil servant contract</td>
<td>-5.76</td>
<td>0.02</td>
<td>-3.06</td>
<td>0.41</td>
<td>frequent exchange among teachers</td>
<td>-0.75</td>
<td>0.37</td>
<td>-0.54</td>
<td>0.51</td>
<td>-0.67</td>
<td>0.35</td>
</tr>
<tr>
<td>Teacher considers promotion opportunities as very important</td>
<td>-5.92</td>
<td>0.00</td>
<td>-0.82</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School inspection in the year 2000</td>
<td>-0.88</td>
<td>0.60</td>
<td>-2.33</td>
<td>0.29</td>
<td>in the year of the survey</td>
<td>1.13</td>
<td>0.20</td>
<td>1.24</td>
<td>0.17</td>
<td>0.79</td>
<td>0.30</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student characteristics and family background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil is female</td>
<td>4.03</td>
<td>0.00</td>
<td>4.20</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil’s age in months</td>
<td>-0.27</td>
<td>0.00</td>
<td>-0.22</td>
<td>0.00</td>
<td>in years</td>
<td>-0.76</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.89</td>
<td>0.00</td>
</tr>
<tr>
<td>Pupil’s home possessions (e.g. newspaper, radio, TV, etc.; 0–8)</td>
<td>0.98</td>
<td>0.00</td>
<td>0.70</td>
<td>0.01</td>
<td>(0–8)</td>
<td>0.36</td>
<td>0.00</td>
<td>0.34</td>
<td>0.00</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Pupil’s housing conditions (1 = bad, 2 = average, 3 = good)</td>
<td>1.69</td>
<td>0.00</td>
<td>1.27</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil’s meals per day (1 = none at all, 2 = 2–3 every day)</td>
<td>3.43</td>
<td>0.00</td>
<td>3.55</td>
<td>0.00</td>
<td>(0–3)</td>
<td>1.58</td>
<td>0.00</td>
<td>1.57</td>
<td>0.00</td>
<td>0.78</td>
<td>0.00</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Variable and Range</th>
<th>SACMEQ Regr. 1 English (1) grade 6</th>
<th>SACMEQ Regr. 2 English (1) grade 6</th>
<th>PASEC Regr. 3 French grade 5</th>
<th>PASEC Regr. 4 French grade 5</th>
<th>PASEC Regr. 5 French grade 5</th>
<th>PASEC Regr. 6 French grade 5</th>
<th>PASEC Regr. 7 French grade 5</th>
<th>PASEC Regr. 8 French grade 5</th>
<th>PASEC Regr. 9 French grade 5</th>
<th>PASEC Regr. 10 French grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental education</td>
<td>2.35 0.00</td>
<td>2.67 0.00</td>
<td>0.98 0.00</td>
<td>0.74 0.00</td>
<td>0.21 0.17</td>
<td>0.24 0.32</td>
<td>1.60 0.00</td>
<td>2.00 0.00</td>
<td>1.04 0.00</td>
<td>1.34 0.00</td>
</tr>
<tr>
<td>(2 = none - 12 = both some post-secondary)</td>
<td></td>
</tr>
<tr>
<td>Number of books at pupil’s home</td>
<td>0.07 0.00</td>
<td>0.09 0.00</td>
<td>1.60 0.00</td>
<td>2.00 0.00</td>
<td>1.04 0.00</td>
<td>1.34 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0-250)</td>
<td></td>
</tr>
<tr>
<td>Parental literacy</td>
<td>23.86 0.00</td>
<td>27.04 0.00</td>
<td>1.72 0.00</td>
<td>1.34 0.03</td>
<td>0.98 0.00</td>
<td>0.70 0.23</td>
<td>3.22 0.00</td>
<td>3.41 0.00</td>
<td>1.22 0.00</td>
<td>2.15 0.01</td>
</tr>
<tr>
<td>(0-250)</td>
<td></td>
</tr>
<tr>
<td>Pupil gets help with homework</td>
<td>-0.72 0.00</td>
<td>-1.21 0.00</td>
<td>1.95 0.00</td>
<td>1.63 0.01</td>
<td>0.50 0.31</td>
<td>-0.24 0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socio economic status of classmates (1-15)</td>
<td>6.92 0.00</td>
<td>6.58 0.00</td>
<td>1.33 0.00</td>
<td>1.35 0.00</td>
<td>1.02 0.00</td>
<td>0.99 0.00</td>
<td>0.44 0.39</td>
<td>0.65 0.21</td>
<td>-0.07 0.87</td>
<td>0.05 0.94</td>
</tr>
<tr>
<td>Teacher characteristics</td>
<td>-3.15 0.03</td>
<td>0.35 0.06</td>
<td>0.24 0.78</td>
<td>0.50 0.52</td>
<td>-0.32 0.06</td>
<td>-0.11 0.09</td>
<td>0.81 0.51</td>
<td>0.90 0.46</td>
<td>0.88 0.40</td>
<td>1.00 0.34</td>
</tr>
<tr>
<td>Teacher is female</td>
<td>0.22 0.00</td>
<td>0.19 0.00</td>
<td>0.09 0.09</td>
<td>0.09 0.12</td>
<td>0.07 0.11</td>
<td>0.07 0.16</td>
<td>-0.11 0.17</td>
<td>-0.09 0.25</td>
<td>-0.09 0.19</td>
<td>-0.07 0.32</td>
</tr>
<tr>
<td>Teacher experience (in years)</td>
<td></td>
</tr>
<tr>
<td>Teacher speaks teaching language at home (3)</td>
<td>-0.32 0.53</td>
<td>-0.26 0.08</td>
<td>0.03 0.05</td>
<td>0.13 0.08</td>
<td>0.25 0.75</td>
<td>-0.07 0.92</td>
<td>-0.04 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher speaks local language</td>
<td>0.06 0.09</td>
<td>0.30 0.06</td>
<td>0.41 0.44</td>
<td>0.64 0.63</td>
<td>1.32 0.32</td>
<td>1.55 0.24</td>
<td>-0.17 0.06</td>
<td>0.07 0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedagogical tools</td>
<td>24.27 0.00</td>
<td>17.05 0.02</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
</tr>
<tr>
<td>Frequency of teaching test (1 = none - 6 = once or more per week)</td>
<td></td>
</tr>
<tr>
<td>Frequency teacher corrects reading homework (3)</td>
<td>-3.77 0.00</td>
<td>-2.07 0.01</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
<td>1.62 0.00</td>
<td>1.10 0.05</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
</tr>
</tbody>
</table>
Table A1. (Continued)

<table>
<thead>
<tr>
<th>SAC MEQ</th>
<th>Regr. 1</th>
<th>Regr. 2</th>
<th>Regr. 3</th>
<th>Regr. 4</th>
<th>Regr. 5</th>
<th>Regr. 6</th>
<th>Regr. 7</th>
<th>Regr. 8</th>
<th>Regr. 9</th>
<th>Regr. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English (1) grade 6</td>
<td>English (1) grade 6</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 2</td>
<td>French grade 2</td>
<td>French grade 2</td>
<td>French grade 2</td>
</tr>
<tr>
<td></td>
<td>English (1) grade 6</td>
<td>English (1) grade 6</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 5</td>
<td>French grade 2</td>
<td>French grade 2</td>
<td>French grade 2</td>
<td>French grade 2</td>
</tr>
<tr>
<td>Coef.</td>
<td>P > z</td>
<td>Coef.</td>
</tr>
<tr>
<td>Other controls</td>
<td>School participates in a pilot project, exchange program etc.</td>
<td>School size (number of pupils)</td>
<td>School location (1 = rural, 4 = city)</td>
<td>Other environment (e.g. distance from school, etc.)</td>
<td>Country fixed effects</td>
<td>Botswana</td>
<td>262.66</td>
<td>0.00</td>
<td>338.90</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Kenya</td>
<td>292.13</td>
<td>0.00</td>
<td>372.21</td>
<td>0.00</td>
<td>Cameroon</td>
<td>52.19</td>
<td>0.00</td>
<td>53.01</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Lesotho</td>
<td>194.33</td>
<td>0.00</td>
<td>286.19</td>
<td>0.00</td>
<td>Gite d’Ivoire</td>
<td>46.08</td>
<td>0.00</td>
<td>47.64</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Malawi</td>
<td>226.11</td>
<td>0.00</td>
<td>304.04</td>
<td>0.00</td>
<td>Malawi</td>
<td>41.94</td>
<td>0.00</td>
<td>38.96</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Mauritius</td>
<td>160.82</td>
<td>0.00</td>
<td>257.69</td>
<td>0.00</td>
<td>Mali</td>
<td>28.42</td>
<td>0.00</td>
<td>29.78</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td>288.94</td>
<td>0.00</td>
<td>376.36</td>
<td>0.00</td>
<td>Niger</td>
<td>27.02</td>
<td>0.00</td>
<td>27.72</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>193.70</td>
<td>0.00</td>
<td>276.00</td>
<td>0.00</td>
<td>Senegal</td>
<td>31.77</td>
<td>0.00</td>
<td>32.37</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Seychelles</td>
<td>227.13</td>
<td>0.00</td>
<td>301.20</td>
<td>0.00</td>
<td>Togo</td>
<td>43.56</td>
<td>0.00</td>
<td>44.81</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>199.21</td>
<td>0.00</td>
<td>290.50</td>
<td>0.00</td>
<td>South Africa</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Swaziland</td>
<td>268.12</td>
<td>0.00</td>
<td>351.00</td>
<td>0.00</td>
<td>Swaziland</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Tanzania</td>
<td>318.80</td>
<td>0.00</td>
<td>401.30</td>
<td>0.00</td>
<td>Tanzania</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Uganda</td>
<td>254.72</td>
<td>0.00</td>
<td>336.27</td>
<td>0.00</td>
<td>Uganda</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Zambia</td>
<td>286.74</td>
<td>0.00</td>
<td>286.71</td>
<td>0.00</td>
<td>Zambia</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Zimbabwe</td>
<td>242.29</td>
<td>0.00</td>
<td>326.95</td>
<td>0.00</td>
<td>Zimbabwe</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>n</td>
<td>37283</td>
<td>37283</td>
<td>13845</td>
<td>13845</td>
<td>13776</td>
<td>13776</td>
<td>13815</td>
<td>13815</td>
<td>13994</td>
<td>13994</td>
</tr>
</tbody>
</table>
Table A1. (Continued)

<table>
<thead>
<tr>
<th>SACMEQ</th>
<th>Regr. 1</th>
<th>Regr. 2</th>
<th>Regr. 3</th>
<th>Regr. 4</th>
<th>Regr. 5</th>
<th>Regr. 6</th>
<th>Regr. 7</th>
<th>Regr. 8</th>
<th>Regr. 9</th>
<th>Regr. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eng. (1)</td>
<td>Eng. (1)</td>
<td>Fr. (2)</td>
<td>Fr. (2)</td>
</tr>
<tr>
<td></td>
<td>grade 6</td>
<td>grade 6</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
</tr>
<tr>
<td>Specified strata (countries)</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Specified PSUs (schools)</td>
<td>2074</td>
<td>1882</td>
<td>1882</td>
<td>1882</td>
<td>1891</td>
<td>1891</td>
<td>1891</td>
<td>1891</td>
<td>1891</td>
<td>1891</td>
</tr>
<tr>
<td>R-squared, between (2)</td>
<td>45.4%</td>
<td>32.3%</td>
<td>64.7%</td>
<td>31.9%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
</tr>
<tr>
<td>R-squared, within (2)</td>
<td>4.5%</td>
<td>21.8%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>23.7%</td>
<td>23.7%</td>
<td>23.7%</td>
<td>23.7%</td>
<td>23.7%</td>
<td>23.7%</td>
</tr>
<tr>
<td>R-squared, total (2)</td>
<td>50.2%</td>
<td>32.3%</td>
<td>64.7%</td>
<td>31.9%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
<td>49.2%</td>
</tr>
</tbody>
</table>

(1) Exceptions: Portuguese for Mozambique, Swahili for Tanzania (mainland) and Zanzibar.
(2) Pseudo R-squared in case of Maximum likelihood estimations (Regression 1). The R-squared refers to a model with country fixed effects. Note that the R-squared between schools appears very high because it includes the impact of the country dummies.
(3) Variable missing for one country and imputed using the linear regression on related variables in the cross-country sample.
Table A2. Mathematics

<table>
<thead>
<tr>
<th>SAC-MEQ</th>
<th>Regr. 11 Math grade 6</th>
<th>Regr. 12 Math grade 6</th>
<th>PASEC Regr. 11 Math grade 5</th>
<th>Regr. 13 Math grade 5</th>
<th>Regr. 14 Math grade 5</th>
<th>Regr. 15 Math grade 5</th>
<th>Regr. 16 Math grade 5</th>
<th>Regr. 17 Math grade 2</th>
<th>Regr. 18 Math grade 2</th>
<th>Regr. 19 Math grade 2</th>
<th>Regr. 20 Math grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial score at the beginning of term (pre-test score)</td>
<td></td>
</tr>
<tr>
<td>Learning materials</td>
<td></td>
</tr>
<tr>
<td>Pupil possesses a textbook for math</td>
<td></td>
</tr>
<tr>
<td>Availability of math text (0 = none, 0.3 = shared with several peers, 0.5 = shared with one peer, 1 = own book)</td>
<td></td>
</tr>
<tr>
<td>Class is equipped with wall charts</td>
<td></td>
</tr>
<tr>
<td>Teacher has access to a teacher’s manual in math</td>
<td></td>
</tr>
<tr>
<td>School equipment</td>
<td></td>
</tr>
<tr>
<td>Condition of school building (1 = needs complete rebuilding - 5 = good condition)</td>
<td></td>
</tr>
<tr>
<td>School is equipped with library</td>
<td></td>
</tr>
<tr>
<td>School is equipped with electricity</td>
<td></td>
</tr>
<tr>
<td>School has access to water</td>
<td></td>
</tr>
<tr>
<td>Pupil-toilet-ratio</td>
<td></td>
</tr>
<tr>
<td>School is equipped with first aid kit</td>
<td></td>
</tr>
<tr>
<td>School has access to water</td>
<td></td>
</tr>
<tr>
<td>Pupil-toilet-ratio</td>
<td></td>
</tr>
<tr>
<td>School is equipped with electricity</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SACMEQ</th>
<th>Regr. 11</th>
<th>Regr. 12</th>
<th>PASSEC</th>
<th>Regr. 13</th>
<th>Regr. 14</th>
<th>Regr. 15</th>
<th>Regr. 16</th>
<th>Regr. 17</th>
<th>Regr. 18</th>
<th>Regr. 19</th>
<th>Regr. 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grade 6</td>
<td>grade 6</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
</tr>
<tr>
<td>School is equipped with technical resources: radio, tv, vcr, computer (0–4)</td>
<td>15.67</td>
<td>0.00</td>
<td>12.90</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class is equipped with library</td>
<td>4.27</td>
<td>0.01</td>
<td>4.20</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom is equipped with blackboard and chalk (or equivalent alternative)</td>
<td>6.24</td>
<td>0.03</td>
<td>5.69</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher numbers and qualification</td>
<td></td>
</tr>
<tr>
<td>Class size</td>
<td>3.29</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class size squared</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher academic qualification (1 = primary, 5 = tertiary)</td>
<td>1.75</td>
<td>0.04</td>
<td>3.20</td>
<td>0.01</td>
<td>(0 = below primary-6 = at least 5 years of tertiary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher professional qualification (1 = no teacher training, 6 = three years or more)</td>
<td>2.37</td>
<td>0.00</td>
<td>1.87</td>
<td>0.05</td>
<td>(0 = teacher has received at least some professional training in any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment of the efficacy of in-service training by teacher (1 = no such training received, 5 = very effective)</td>
<td>-0.14</td>
<td>0.76</td>
<td>-0.20</td>
<td>0.76</td>
<td>average number of in-service training courses per year (during the last five years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization of student flows and study time</td>
<td>0.57</td>
<td>0.09</td>
<td>-2.48</td>
<td>0.45</td>
<td>(continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ</td>
<td>Regr. 11</td>
<td>Regr. 12</td>
<td>Regr. 13</td>
<td>Regr. 14</td>
<td>Regr. 15</td>
<td>Regr. 16</td>
<td>Regr. 17</td>
<td>Regr. 18</td>
<td>Regr. 19</td>
<td>Regr. 20</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 11</td>
<td>Math grade 6</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 12</td>
<td>Math grade 6</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 13</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 14</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 15</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 16</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 17</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 18</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 19</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACMEQ Regr. 20</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td>A: 2-level model</td>
<td>B: survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable and Range

<table>
<thead>
<tr>
<th>Variable and Range</th>
<th>Coef.</th>
<th>P > (z)</th>
<th>Coef.</th>
<th>P > (t)</th>
<th>Coef.</th>
<th>P > (z)</th>
<th>Coef.</th>
<th>P > (t)</th>
<th>Coef.</th>
<th>P > (z)</th>
<th>Coef.</th>
<th>P > (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-grade teaching</td>
<td>-8.66</td>
<td>0.00</td>
<td>-8.86</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil's overall grade repetition</td>
<td>-4.82</td>
<td>0.00</td>
<td>-9.32</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil is attending school</td>
<td>20.15</td>
<td>0.00</td>
<td>24.29</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil has no health problems</td>
<td>2.87</td>
<td>0.08</td>
<td>1.96</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher arrives late</td>
<td>-7.05</td>
<td>0.00</td>
<td>-7.04</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher absenteeism</td>
<td>0.16</td>
<td>0.94</td>
<td>-0.43</td>
<td>0.63</td>
<td>-0.33</td>
<td>0.02</td>
<td>-0.29</td>
<td>0.02</td>
<td>-0.24</td>
<td>0.05</td>
<td>-0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>Number of lost school days</td>
<td>-0.06</td>
<td>0.06</td>
<td>-0.02</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School type</td>
<td>3.67</td>
<td>0.42</td>
<td>1.08</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parents' contribution to classroom materials</td>
<td>1.81</td>
<td>0.04</td>
<td>2.09</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parents equally mobilized for school issues</td>
<td>1.18</td>
<td>0.11</td>
<td>1.29</td>
<td>0.09</td>
<td>0.62</td>
<td>0.34</td>
<td>0.08</td>
<td>0.47</td>
<td>0.11</td>
<td>0.91</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>SACMEQ</td>
<td>Regr. 11</td>
<td>Regr. 12</td>
<td>PASEC</td>
<td>Regr. 13</td>
<td>Regr. 14</td>
<td>Regr. 15</td>
<td>Regr. 16</td>
<td>Regr. 17</td>
<td>Regr. 18</td>
<td>Regr. 19</td>
<td>Regr. 20</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Math grade 6</td>
<td>A: 2-level model</td>
<td>Math grade 6</td>
<td>B: survey</td>
<td>Math grade 5</td>
<td>A: 2-level</td>
<td>Math grade 5</td>
<td>B: survey</td>
<td>Math grade 5</td>
<td>A: 2-level</td>
<td>Math grade 5</td>
<td>B: survey</td>
</tr>
<tr>
<td>Parents’ or community’s payment of exam fees, additional teacher salaries or bonuses (0 = none-0)</td>
<td>-0.82</td>
<td>0.47</td>
<td>-0.47</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher works on a non-civil servant contract</td>
<td>0.59</td>
<td>0.61</td>
<td>1.33</td>
<td>0.30</td>
<td>0.24</td>
<td>0.81</td>
<td>0.61</td>
<td>0.60</td>
<td>-0.68</td>
<td>0.62</td>
<td>-0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>Teacher gets advice from principal at least once a year</td>
<td>0.96</td>
<td>0.70</td>
<td>-0.77</td>
<td>0.04</td>
<td>frequent exchange among teachers</td>
<td>0.64</td>
<td>0.46</td>
<td>0.75</td>
<td>0.40</td>
<td>0.56</td>
<td>0.47</td>
<td>0.55</td>
</tr>
<tr>
<td>School inspection in the year 2000</td>
<td>-6.67</td>
<td>0.00</td>
<td>-1.35</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls of Student characteristics and family background (0 = n/a)</td>
<td>-8.48</td>
<td>0.00</td>
<td>-5.93</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil in female</td>
<td>-1.39</td>
<td>0.00</td>
<td>-0.90</td>
<td>0.00</td>
<td>-0.68</td>
<td>0.00</td>
<td>-0.16</td>
<td>0.53</td>
<td>-1.69</td>
<td>0.00</td>
<td>-1.10</td>
<td>0.01</td>
</tr>
<tr>
<td>Pupil’s age in months</td>
<td>-0.27</td>
<td>0.00</td>
<td>-0.22</td>
<td>0.00</td>
<td>in years</td>
<td>-0.40</td>
<td>0.00</td>
<td>-0.20</td>
<td>0.15</td>
<td>-0.40</td>
<td>0.00</td>
<td>-0.24</td>
</tr>
<tr>
<td>Pupil’s home possessions (e.g. newspaper, tv, telephone, etc.)</td>
<td>1.19</td>
<td>0.00</td>
<td>0.92</td>
<td>0.00</td>
<td>(0-6)</td>
<td>0.20</td>
<td>0.00</td>
<td>0.16</td>
<td>0.05</td>
<td>0.13</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>Pupil’s housing conditions (0 = bad - 6 = good)</td>
<td>1.02</td>
<td>0.00</td>
<td>0.59</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil’s meals per day (0 = none at all - 6 = 3 every day)</td>
<td>2.81</td>
<td>0.00</td>
<td>3.11</td>
<td>0.00</td>
<td>(0-3)</td>
<td>1.19</td>
<td>0.00</td>
<td>1.54</td>
<td>0.00</td>
<td>0.18</td>
<td>0.41</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

(continued)
Table A2. (Continued)

<table>
<thead>
<tr>
<th>SACMEQ</th>
<th>Regr. 11</th>
<th>Regr. 12</th>
<th>Regr. 13</th>
<th>Regr. 14</th>
<th>Regr. 15</th>
<th>Regr. 16</th>
<th>Regr. 17</th>
<th>Regr. 18</th>
<th>Regr. 19</th>
<th>Regr. 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grade 6</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 5</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
<td>grade 2</td>
</tr>
<tr>
<td></td>
<td>2-level</td>
<td>2-level</td>
<td>2-level</td>
<td>2-level</td>
<td>2-level</td>
<td>Br survey</td>
<td>Br survey</td>
<td>Br survey</td>
<td>Br survey</td>
<td>Br survey</td>
</tr>
<tr>
<td>Parental education</td>
<td>1.45</td>
<td>0.00</td>
<td>1.80</td>
<td>0.00</td>
<td>Parental literacy</td>
<td>0.40</td>
<td>0.02</td>
<td>0.67</td>
<td>0.01</td>
<td>0.30</td>
</tr>
<tr>
<td>(2 = none - 12 = both/some (post-secondary))</td>
<td>0.08</td>
<td>0.00</td>
<td>0.08</td>
<td>0.00</td>
<td>Pupil has some books at home (0-20)</td>
<td>1.21</td>
<td>0.00</td>
<td>1.08</td>
<td>0.00</td>
<td>0.32</td>
</tr>
<tr>
<td>Number of books at pupil's home (0-20)</td>
<td>22.25</td>
<td>0.00</td>
<td>24.02</td>
<td>0.00</td>
<td>French (2)</td>
<td>1.25</td>
<td>0.00</td>
<td>1.07</td>
<td>0.07</td>
<td>0.59</td>
</tr>
<tr>
<td>Pupil speaks English at home</td>
<td>0.39</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.96</td>
<td>0.16</td>
<td>2.96</td>
<td>3.00</td>
<td>2.09</td>
<td>0.00</td>
</tr>
<tr>
<td>Socio economic status of classmates (1-15)</td>
<td>4.88</td>
<td>0.00</td>
<td>4.32</td>
<td>0.00</td>
<td>Teacher characteristics</td>
<td>0.41</td>
<td>0.24</td>
<td>0.44</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td>Teacher is female</td>
<td>1.27</td>
<td>0.40</td>
<td>1.49</td>
<td>0.51</td>
<td>Teacher job experience (in years)</td>
<td>0.05</td>
<td>0.37</td>
<td>0.07</td>
<td>0.24</td>
<td>0.05</td>
</tr>
<tr>
<td>Teacher speaks teaching language at home (2)</td>
<td>−0.48</td>
<td>0.37</td>
<td>−0.55</td>
<td>0.30</td>
<td>−0.16</td>
<td>0.73</td>
<td>−0.11</td>
<td>0.02</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>Teacher speaks local language</td>
<td>0.56</td>
<td>0.67</td>
<td>0.11</td>
<td>0.90</td>
<td>0.44</td>
<td>0.56</td>
<td>0.23</td>
<td>0.78</td>
<td>1.71</td>
<td>0.12</td>
</tr>
<tr>
<td>Pedagogical tools</td>
<td>−0.08</td>
<td>0.91</td>
<td>−10.50</td>
<td>0.25</td>
<td>Frequency of math test</td>
<td>0.00</td>
<td>1.00</td>
<td>1.11</td>
<td>0.26</td>
<td>Frequency teacher corrects math homework (1 = no homework - 7 = always)</td>
</tr>
<tr>
<td>SACMEQ</td>
<td>Regr. 11</td>
<td>Regr. 12</td>
<td>PASEC</td>
<td>Regr. 13</td>
<td>Regr. 14</td>
<td>Regr. 15</td>
<td>Regr. 16</td>
<td>Regr. 17</td>
<td>Regr. 18</td>
<td>Regr. 19</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Math grade 6</td>
<td>A: 2-level model</td>
<td>Math grade 6</td>
<td>Bi survey</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
<td>Math grade 5</td>
<td>B: survey</td>
<td>Math grade 5</td>
<td>A: 2-level model</td>
</tr>
<tr>
<td>Other controls</td>
<td>0.44</td>
<td>0.60</td>
<td>0.48</td>
<td>0.08</td>
<td>0.38</td>
<td>0.55</td>
<td>0.46</td>
<td>0.44</td>
<td>0.60</td>
<td>0.33</td>
</tr>
<tr>
<td>School participates in a pilot project, exchange program etc</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>School size (number of pupils)</td>
<td>2.68</td>
<td>0.10</td>
<td>0.99</td>
<td>0.53</td>
<td>1.22</td>
<td>0.21</td>
<td>1.20</td>
<td>0.22</td>
<td>0.98</td>
<td>0.26</td>
</tr>
<tr>
<td>Class environment (e.g. disturbance, theft, etc.; 0 = never-17)</td>
<td>0.41</td>
<td>0.23</td>
<td>0.52</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>Botswana</td>
<td>341.48</td>
<td>0.00</td>
<td>422.23</td>
<td>0.00</td>
<td>Burundi</td>
<td>44.54</td>
<td>0.00</td>
<td>41.41</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Kenya</td>
<td>396.38</td>
<td>0.00</td>
<td>483.11</td>
<td>0.00</td>
<td>Cameroon</td>
<td>46.10</td>
<td>0.00</td>
<td>43.07</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Lesotho</td>
<td>277.64</td>
<td>0.00</td>
<td>374.14</td>
<td>0.00</td>
<td>Côte d'Ivoire</td>
<td>46.37</td>
<td>0.00</td>
<td>31.80</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Malawi</td>
<td>306.58</td>
<td>0.00</td>
<td>387.15</td>
<td>0.00</td>
<td>Madagascar</td>
<td>56.95</td>
<td>0.00</td>
<td>53.30</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Mauritius</td>
<td>317.79</td>
<td>0.00</td>
<td>484.53</td>
<td>0.00</td>
<td>Mali</td>
<td>31.51</td>
<td>0.00</td>
<td>28.11</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td>384.28</td>
<td>0.00</td>
<td>480.83</td>
<td>0.00</td>
<td>Niger</td>
<td>28.40</td>
<td>0.00</td>
<td>24.67</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>362.78</td>
<td>0.00</td>
<td>382.72</td>
<td>0.00</td>
<td>Senegal</td>
<td>34.64</td>
<td>0.00</td>
<td>30.96</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Seychelles</td>
<td>306.44</td>
<td>0.00</td>
<td>386.36</td>
<td>0.00</td>
<td>Togo</td>
<td>41.19</td>
<td>0.00</td>
<td>38.20</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>285.46</td>
<td>0.00</td>
<td>385.07</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swaziland</td>
<td>340.13</td>
<td>0.00</td>
<td>437.59</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanzania</td>
<td>303.03</td>
<td>0.00</td>
<td>471.52</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uganda</td>
<td>271.31</td>
<td>0.00</td>
<td>454.44</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zambia</td>
<td>289.95</td>
<td>0.00</td>
<td>375.09</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zambie</td>
<td>328.31</td>
<td>0.00</td>
<td>423.73</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Variable and Range</th>
<th>SACMEQ Regr. 11</th>
<th>SACMEQ Regr. 12</th>
<th>PASEC Regr. 13</th>
<th>SACMEQ Regr. 14</th>
<th>SACMEQ Regr. 15</th>
<th>SACMEQ Regr. 16</th>
<th>SACMEQ Regr. 17</th>
<th>SACMEQ Regr. 18</th>
<th>SACMEQ Regr. 19</th>
<th>SACMEQ Regr. 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef. P > x conf.</td>
<td>Math grade 5</td>
<td>Math grade 2</td>
<td>Math grade 2</td>
<td>Math grade 5</td>
<td>Math grade 5</td>
<td>Math grade 2</td>
</tr>
<tr>
<td></td>
<td>At 2-level</td>
</tr>
<tr>
<td>Specified strata</td>
<td>36023</td>
<td>36023</td>
<td>14008</td>
<td>14008</td>
<td>14253</td>
<td>14253</td>
<td>15786</td>
<td>15786</td>
<td>15786</td>
<td>15786</td>
</tr>
<tr>
<td>(countries)</td>
<td></td>
</tr>
<tr>
<td>Specified PSUs</td>
<td>2002</td>
<td>2002</td>
<td>882</td>
<td>882</td>
<td>882</td>
<td>882</td>
<td>891</td>
<td>891</td>
<td>891</td>
<td>891</td>
</tr>
<tr>
<td>(schools)</td>
<td></td>
<td></td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>182</td>
<td>891</td>
<td>891</td>
<td>891</td>
<td>891</td>
</tr>
<tr>
<td>R-squared, between</td>
<td>40.8%</td>
<td>43.5%</td>
<td>36.2%</td>
<td>37.4%</td>
<td>37.4%</td>
<td>37.4%</td>
<td>47.5%</td>
<td>47.5%</td>
<td>47.5%</td>
<td>47.5%</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>R-squared, within</td>
<td>1.5%</td>
<td>2.8%</td>
<td>22.0%</td>
<td>2.6%</td>
<td>2.6%</td>
<td>2.6%</td>
<td>26.0%</td>
<td>26.0%</td>
<td>26.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>R-squared, total</td>
<td>79.0%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
<td>36.5%</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Pseudo R-squared in case of Maximum likelihood estimations (Regression 11). The R-squared refers to a model with strata constant (omitting one country fixed effect). Note that the R-squared between schools appears very high because it includes the impact of the country dummies.

(2) Variable missing for one country and imputed using the linear regression on related variables in the cross-country sample. coefficients significant at the 5% level are bold.
A3 Single country regressions

The following two tables show single country regression results for all PASEC and SACMEQ countries. The number of regressions in which a coefficient is significant at 5, 10 or 20 per cent is reported for PASEC fifth grade with and without pretest and for SACMEQ sixth grade regressions. The total number of single country regressions is eight in PASEC and 14 in SACMEQ because Tanzania and Zanzibar are treated like separate countries.

Table A3. PASEC 5th grade single country regressions (number of significant regressions at 5, 10 or 20%)

<table>
<thead>
<tr>
<th></th>
<th>Text book possession</th>
<th>Teacher academic qualification</th>
<th>Teacher professional qualification</th>
<th>Double shift organisation</th>
<th>Pupil has books at home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maths no pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insignificant at</td>
<td>20%</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maths with pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>insignificant at</td>
<td>20%</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literacy no pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>insignificant at</td>
<td>20%</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literacy with pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>significant at</td>
<td>10%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>insignificant at</td>
<td>20%</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Double shift organisation does not exist for Togo.
Table A4. SACMEQ 6th grade single country regressions (number of significant regressions at 5, 10 or 20%)

<table>
<thead>
<tr>
<th>Availability of Book</th>
<th>Teacher Academic Qualification</th>
<th>Teacher Professional Qualification</th>
<th>Double Shift Organisation</th>
<th>Number of Books at Home</th>
<th>Classroom Library</th>
<th>Teacher's Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive sig at</td>
<td>20%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Negative sig at</td>
<td>20%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insignificant at</td>
<td>20%</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Literacy</td>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive sig at</td>
<td>20%</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative sig at</td>
<td>20%</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Insignificant at</td>
<td>20%</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: no variation in double shift teaching in six countries.
A4 Differences in Sampling in SACMEQ and PASEC Countries

A relevant issue for our current analysis is that PASEC is sampling students within a single class for each school while SACMEQ is randomly drawing students from the overall sixth grade population within each school in the sample. This implies that for a given number of students drawn in each school and grade (typically 20 students in both surveys), in SACMEQ, we have more variation between teacher and classroom environments, but with only few students to whom this information can be directly related. Conversely, in PASEC we have information on the students actually taught by the same teacher in exactly the same environment. These differences lead to different degrees of precision for our econometric estimates at the different levels (schools, teachers/classrooms, and students).

In SACMEQ regressions, schools are the only level explicitly considered in the hierarchical models, and the primary sampling units in the survey regressions. In PASEC, the hierarchical level and the primary sampling unit considered is the classroom. The overall impact is difficult to predict. In any case, for SACMEQ, simple two-level hierarchical estimation models which do not take into account any sub-group clustering within schools appear to be problematic. This is the reason for the introduction of an alternative specification using Stata’s survey sampling procedures as a robustness check. (For further details see entry for svyreg command in STATA Corp. (2003), Survey Data, Statistical Software, release 8.)

Finally, neither in SACMEQ nor in PASEC all schools are included in the defined target population. In PASEC, sampling relies on school mappings available at the ministries of education, which, in some countries, exclude private schools. In SACMEQ, small schools with less than 15 or 20 students, schools for students with special needs and, in some cases, ‘inaccessible’ schools were removed from the initial target population. While in SACMEQ countries, these exclusions never went beyond 5 per cent, their exclusion may still have an impact on the estimated role of certain variables such as class size, teachers’ absence and so forth.

For further details on sample design procedures for SACMEQ, see SACMEQ (2004: section F). For PASEC, a similar brochure is in process and should be available in 2009.

Sample Sizes

Finally, without being related to different sampling procedures, one more difference between our data for SACMEQ and PASEC should be kept in mind when interpreting regression results: Overall sample size is quite different for the two country groups. In SACMEQ, 14 countries are covered while only eight countries are covered by PASEC (other country data are available since recently, but could not yet be integrated here). In terms of observations for individual students, this leads to a total sample size for SACMEQ which is more than twice as high as in PASEC. Obviously, this influences the precision of coefficient estimates in our regressions.