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Abstract

We develop and analyze a labor market model in which heterogeneous

firms operate under decreasing returns and compete for labor by posting

long-term contracts. Firms achieve faster growth by offering higher life-

time wages, which allows them to fill vacancies with higher probability,

consistent with recent empirical findings. The model also captures several

other regularities about firm size, job flows and pay, and generates sluggish

aggregate dynamics of labor market variables. In contrast to existing bar-

gaining models with large firms, efficiency obtains and the model allows a

tractable characterization over the business cycle.
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1 Introduction

Search models of the labor market following the Diamond-Mortensen-Pissarides

framework have traditionally abstracted from the role of firms, concentrating on

the concepts of jobs and vacancies (see, e.g., Rogerson et al. (2005)). While

a recent wave of contributions include firm size through decreasing returns in

production, they rely on the standard assumption that vacancies are filled at

a common matching rate which depends on aggregate market conditions but is

independent of the characteristics of the firm that posts the job. In this paper we

propose an alternative theory in which heterogeneous firms compete for workers

through their wage announcements, which naturally implicates differential job-

filling rates across firms. This theory predicts several relations for the cross-

section of firms and for the time-variation over the business cycle that seem to

match with recent empirical findings. The firm dynamics are efficient, and the

model setting remains tractable even in the presence of aggregate shocks.

Recent empirical evidence highlights that the probability of filling jobs depends

on the characteristics of the firm. In the cross-section, Davis et al. (2013) show

that firms expand faster not only by posting more vacancies, but especially by

filling these vacancies at higher rates; for example, the job-filling rate almost

doubles as monthly employment growth increases from 10% to 20%. Across

time, they back out an aggregate measure of “recruiting intensity” that moves

pro-cyclically, leading to a lower level of matching efficiency for a given labor

market tightness in downturns.

Our theory models firms through decreasing returns to labor as in Hopenhayn

and Rogerson (1993). In the labor market, we follow the competitive search

literature (e.g. Moen (1997)) where employers can publicly post long-term wage

contracts to attract unemployed workers. When a firm attracts more workers to

its vacancies, the matching rate increases. In our setting with large firms, we allow
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the firms to choose the number of vacancies alongside the posted wage contracts,

and it is in fact optimal for them to use both margins. Therefore, matching

rates are not an aggregate object but are firm-specific. Growing firms decide

to offer better contracts if it is increasingly costly to hire additional workers,

which arises, for example, when recruitment takes up time of the existing workers

(Shimer (2010)), so that firms expand their workforce slowly over time. We argue

that this feature not only generates varying job-filling rates at the micro level,

but also gives rise to sensible aggregate dynamics. Particularly, important labor

market variables, such as the job-finding rate, react with delay to aggregate

shocks. While such sluggish adjustment is consistent with the evidence from

vector autoregressions (e.g. Fujita and Ramey (2007)), it is hard to reconcile

with the textbook search and matching model (Shimer (2005)). In a quantitative

assessment, our model tracks well both the cross-sectional variation as well as the

business-cycle variation of recruiting intensity described by Davis et al. (2013). It

also leads to slow adjustment of the aggregate job-finding rate and other desirable

business-cycle properties.

Our view that firms can attract workers to their vacancies is aimed to capture

the features mentioned above and to provide an alternative framework to think

about job creation and job destruction of heterogeneous firms in frictional labor

markets that contrasts with the prevailing workhorse model based on random

search and bilateral bargaining pioneered by Stole and Zwiebel (1996) and Smith

(1999).1 One obvious difference between the models is the rate at which firms

fill their jobs. In the existing contributions, this is governed by the aggregate

matching function, so that firms can only hire more if they post more vacancies,

1Subsequent work adopts this approach to study, for example, unemployment and efficiency
(Bertola and Caballero (1994), Acemoglu and Hawkins (2014)), labor and product market
regulation (Koeniger and Prat (2007), Ebell and Haefke (2009)), business cycles (e.g., Elsby
and Michaels (2013), Fujita and Nakajima (2013)), and international trade and its labor market
implications (Helpman and Itskhoki (2010)).
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which conflicts with the evidence cited above. Our model naturally focuses on

both recruiting margins, the number of vacancies and their filling rate.

A second difference to the prevailing models concerns the normative implica-

tions. In the bargaining frameworks, firms hire excessively in order to depress

the wages of all their workers, yielding a within-firm externality (see e.g. Smith

(1999)).2 In our setting, contracts are long-term, eliminating the inefficiency

within the firm. Combined with public posting of wage contracts this induces

efficient outcomes both on the extensive margins of firm entry/exit and on the

intensive margins of firm expansion/contraction, governed by a modified Hosios

(1990) condition. This extends standard efficiency results of competitive search

(see e.g. Moen (1997)) to settings with rich firm dynamics.3

Finally, we establish that our environment is particularly tractable, even out-

side of steady state. While one could possibly add recruiting intensity to existing

bargaining models, the complications arising from such settings, especially in the

presence of aggregate shocks, make this difficult. Tractability in our model arises

from free entry of firms and competitive search. When a firm decides whether

to hire and what contracts to offer, it needs to know the workers’ utility value

of unemployment, as this defines the relevant outside option. This utility value

generally depends on the distribution of other firms in the market, which is an

infinite-dimensional object. In our setting, since workers can choose where to

search for a job, they are indifferent between existing firms and new entrants,

2In contrast to one-worker bargaining models, the inefficiency cannot be corrected by an
appropriate level of the bargaining power parameter. Even with wage commitments, the ran-
domness of the search process generates an across-firm externality that impedes efficiency (see
Hawkins (2014)).

3We are not aware of a formal efficiency result for large firms operating under decreasing
returns. Hawkins (2013) suggests such an outcome on the basis of a static model, but his
results are complicated by the stochastic nature of the hiring process and they do not extend
to his dynamic setting with shocks. Menzio and Moen (2010) do not obtain efficiency because
they focus on lack of commitment, and Garibaldi et al. (2014) abstract from decreasing returns.
While efficiency often obtains in competitive-search settings, the subtle nature of search markets
does not render this insight obvious when choices along different margins interact (cf. Galenianos
and Kircher (2009), Guerrieri (2008), and Footnote 19).
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and the latter number adjusts to equate the marginal benefit to the entry costs,

independent of the existing firms. This implies that only the current aggregate

productivity enters the workers’ utility value and hence the firms’ optimization

problem, eliminating the need for approximation techniques like those of Krusell

and Smith (1998) that are usually necessary to study business cycles with het-

erogeneous firms (e.g. Elsby and Michaels (2013), Fujita and Nakajima (2013)).

The fact that individual firms’ policy functions jump with business cycle shocks

does not imply, however, that important aggregate variables, such as the workers’

job-finding rate, jump as well. To the contrary, the distribution of firms evolves

slowly and many job openings are not governed by free entry. Hence, the aggre-

gate job-finding rate and the vacancy-unemployment ratio feature a slow response

to business-cycle shocks, as documented by Fujita and Ramey (2007) and Fujita

(2011), as well as an imperfect correlation with aggregate productivity (Shimer

(2005)).

The idea that policy functions are jump variables also features in Pissarides

(2000) for random search and in Shi (2009) and Menzio and Shi (2010, 2011) for

competitive search, but in those settings there is entry at all wage contracts and

the job-finding rate is a jump variable, perfectly correlated with aggregate pro-

ductivity.4 Since the link between firm-level dynamics and aggregate dynamics

is important, we explore this feature in more detail in the quantitative section of

this paper. Indeed we demonstrate that the calibrated model generates aggregate

labor market dynamics that are largely in line with the U.S. business cycle. It

generates sluggish responses of key labor market variables, and aggregate mea-

sures of the vacancy yield and of the recruiting intensity show similar cyclicality

and volatility as found by Davis et al. (2013).

4In Shi (2009) and Menzio and Shi (2010, 2011), firms are indifferent between all contracts
and there is free entry at every contract. In our setting, the workers are indifferent between all
wage contracts, but there is still free entry on the firms’ side. This additional feature brings
about the difference in some results, while retaining tractability.
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Our work describes the recruitment behavior of firms competing for unem-

ployed workers. One could envision additionally competition for employed work-

ers. Burdett and Mortensen (1998), Postel-Vinay and Robin (2002) and Moscarini

and Postel-Vinay (2013) explore this in random search environments, but the

complexity of these models makes it difficult to study firm dynamics, as firms

are usually assumed to face neither idiosyncratic nor aggregate shocks.5 In

the competitive-search literature, job-to-job mobility has been considered by Shi

(2009), Menzio and Shi (2010, 2011), Garibaldi et al. (2014) and recently Schaal

(2012). Except for the last contribution, firm size in these models is not re-

stricted by the operated technology, circumventing considerations induced by the

difference between average and marginal product. Schaal (2012) differs from ours

by assuming linear recruitment costs, which imply that firms immediately jump

to their desired sizes, they are indifferent between all contracts and hence face

identical job-filling rates, and there is no aggregate sluggishness.

To build intuition for our model and to highlight its features, we first analyze a

simplified environment without productivity shocks. In that setting we derive im-

plications relating firm size and growth to pay and job-filling rates. Subsequently

we establish tractability and efficiency in the presence of shocks, and discuss the

robustness of our propositions. We then move to a quantitative assessment to

analyze the main cross-sectional and business-cycle features. As a policy appli-

cation, we explore the impact of hiring subsidies on labor market dynamics. All

proofs and some extensions are relegated to the Appendix.

5Moscarini and Postel-Vinay (2013) do allow for aggregate shocks, but their requirement of
rank-preserving hiring prevents the study of firm entry and firm-specific shocks. To our knowl-
edge, the only model that explicitly focuses on firm dynamics is Lentz and Mortensen (2012),
which combines decreasing returns with on-the-job search, but again it has no idiosyncratic or
aggregate shocks.
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2 The Model

2.1 The Environment

The model is set in discrete time and has a continuum of workers and firms.

The mass of workers is normalized to one. Each worker is infinitely-lived, risk-

neutral, and discounts future income with factor β < 1. A worker supplies

one unit of labor per period when employed and receives income b ≥ 0 when

unemployed. Only unemployed workers search for employment, so there are no

job-to-job transitions. On the other side of the labor market is an endogenous

mass of firms. Firms are large relative to workers, in the sense that each active

firm employs a continuum of workers. Firms are also risk neutral and have the

same discount factor β.

In each period, a firm produces output xzF (L) with L ≥ 0 workers, where F is

a twice differentiable, strictly increasing and strictly concave function satisfying

F ′(0) = ∞ and F ′(∞) = 0. x ∈ X is idiosyncratic productivity and z ∈ Z

is aggregate productivity. Both x and z follow Markov processes on finite state

spaces X and Z with respective transition probabilities π(x+|x) and ψ(z+|z).
Each existing firm pays an operating cost f ≥ 0 per period. Each new entrant

pays setup cost K(z), possibly dependent on the aggregate state, and draws an

initial productivity level x0 ∈ X with probability π0(x0). Firms die with exoge-

nous probability δ0 > 0, in which case all workers are laid off into unemployment.

Furthermore, each worker quits a job with exogenous probability s0 ≥ 0. δ0 are

s0 are lower bounds on the actual exit and separation rates δ ≥ δ0, s ≥ s0, since

firms may decide to leave the market or to lay off some workers in the event of

an adverse productivity shock.

Search for new hires is a costly activity. A firm with workforce L and pro-

ductivity xz that posts V vacancies incurs recruitment costs C(V, L, xz). Apart
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from twice differentiability, we assume that a firm’s output net of recruitment

costs is strictly increasing in (L, xz) and strictly concave in (V, L). In particular,

this requires that C is strictly convex in V . Popular functional form are

C(V, L, xz) = xzF (L)−xzF (L−hV )+k(V ) or C(V, L, xz) =
c

1 + γ

(
V

L

)γ

V .

(1)

In the first specification, k(V ) captures some convex monetary costs (see e.g.

Cooper et al. (2007)) and hV captures labor input in recruitment (see e.g. Shimer

(2010)). Even in the absence of monetary costs and despite linearity of the labor

input, this leads to convex costs because of decreasing returns in production.6

The second, constant-returns specification, which is borrowed from Merz and

Yashiv (2007), assumes that average costs per vacancy depend on the vacancy

rate (i.e. vacancies divided by employment), allowing larger firms with propor-

tionally higher vacancies to incur the same unit costs.7 In either setting, firms

cannot instantaneously grow large simply by posting enough vacancies at con-

stant marginal cost. For some proofs of cross-sectional relationships derived be-

low (Proposition 1 and subsequent corollaries), we focus on cost functions such

as those in (1) which satisfy the following properties on cross-derivatives:8

6Clearly no more workers can be engaged in hiring than are present at the firm. To get
the hiring process started for entrant firms, we need to assume that a new firm is endowed
with initial labor input of the entrepreneur Le so that the actual labor input is L̃ = Le + L.
Recruitment activities are then constrained by hV ≤ L+Le, and Inada conditions on F ensure
that this constraint never binds. A similar adjustment is needed for the second specification in
(1) to avoid division by zero at entrant firms (see Section 3).

7To be precise, Merz and Yashiv (2007) specify and estimate convex adjustment costs (at
the aggregate level) that depend on hires rather than vacancies. Relatedly, Blatter et al. (2012)
estimate hiring costs on Swiss firm-level data and also find evidence for convexity. Costs that
depend on hires better reflect training costs and could additionally be introduced into our
framework. Costs that depend on the number of job openings capture recruiting costs and are
more common in the search and matching literature.

8The first two conditions state that an additional vacancy is more expensive if the firm is
smaller or if it is more productive. This arises in (1) because in a smaller firm a given number
of vacancies has a higher weight, while at higher productivity it is more costly to withdraw
workers from production. The third condition guarantees that the firm’s value function is
supermodular in (xz, L) (i.e. more productive firms gain more from being larger), since output
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(C) C12 ≤ 0 , C13 ≥ 0 , and − C12C13/C11 ≤ F ′ − C23 .

We formulate a competitive search equilibrium in which firms compete for

workers by posting long-term contracts. Unemployed workers direct their job

search towards the most attractive offers: they can observe all contracts and

choose for which one to search. At any type of contract, job seekers and vacancies

are matched according to a matching function: if a contract attracts λ workers

per vacancy, the matching function determines the probability m with which each

vacancy gets filled. Therefore, a firm fills its vacancies with probability m only

if it offers a contract that attracts λ(m) unemployed job seekers per vacancy.9

Standard assumptions on the matching function guarantee that this function is

twice differentiable, strictly increasing and strictly convex in m, with λ(0) = 0,

λ′(0) ≥ 1 and λ′(1) = ∞.10 It is increasing since firms achieve a higher matching

probability only if more workers are searching for their vacancies. It is convex

since it becomes increasingly difficult to increase the matching rate when more

workers are attracted to the vacant job. The workers’ matching probability is

m/λ(m), which is strictly decreasing.

The labor market within each period operates in three stages. First, aggre-

gate productivity is revealed, new firms enter, and idiosyncratic productivities

are revealed. Second, firms produce and they decide about vacancy postings,

contracts offered to new hires, layoffs, and possibly about exiting at the end of

minus vacancy costs are supermodular in these variables (right-hand side) and larger than any
countervailing indirect effects that these variable have via the number of vacancies (left-hand
side). This holds trivially if costs are independent of either productivity or size.

9We follow the standard assumption in the search literature with large firms ithat each job
has its own matching probability, i.e., applicants from one job cannot be hired at another job in
the same firm, which arises, for example, if different jobs require different qualifications. Only
few papers explore the idea that workers are literally identical and can be hired for another job
than the one they applied for (see Burdett et al. (2001), Hawkins (2013) and Lester (2010)).

10Function λ is the inverse of the standard matching function m̃ : [0,∞) → [0, 1) that maps
the realized unemployed-vacancy ratio λ̃ into the hiring probability. Typically, m̃ is assumed
to be strictly increasing and strictly concave, and m̃(λ̃) ≤ min(1, λ̃) guarantees that m̃′(0) ≤ 1.
Therefore, we can define λ(m) = m̃−1(m), and the properties in the text follow.
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the period. Separated workers enter the unemployment pool and start to search

for employment in the next period. And third, unemployed workers and vacant

jobs are matched.11

In the next section, we consider a stationary environment without idiosyncratic

or aggregate productivity shocks. This allows us to focus on firm growth in a

particularly tractable labor market model with a simple contract space. We

extend this environment in Section 2.3.

2.2 The Stationary Model

This section abstracts from productivity shocks. That is, we set aggregate pro-

ductivity to z = 1. Idiosyncratic productivity stays constant throughout the life

of a firm but may differ across firms who draw their productivity upon entry. We

also set operating costs f to zero. The absence of shocks implies in particular

that firms neither voluntarily exit the market, nor do they lay off any workers.

Hence, the exit and separation rates are exogenous, δ = δ0 and s = s0, and so is

any worker’s retention probability ϕ ≡ (1− δ)(1− s).

To attract unemployed job seekers, a recruiting firm announces a flat flow wage

w to be paid to its new hires for the duration of the employment relation. The

assumption that the firm offers the same wage to all its new hires turns out not

to entail a restriction; see the discussion following equation (5) below. Further,

because of risk neutrality, only the net present value that a firm promises to the

worker matters. Flat wages are one way of delivering these promises.12

Unemployed workers direct their search optimally to the wages offered by firms.

To understand what wage w(m) a firm has to offer in order to achieve matching

11It follows from this specification that new entrants can only produce output with their first
hires in the period after entry.

12This is a theory of the present value of offered wages. Constant wages can be viewed as the
limiting case of risk-neutral firms and risk-averse workers, as risk aversion vanishes. But other
payment patterns are conceivable; for further discussion about this issue, see Section 2.3.2.
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probability m, note that in a stationary environment an unemployed worker who

is seeking for a particular wage in one period is willing to search for that wage in

every period.13 Let U denote the discounted present value from such job search.

It is given by the following asset value equation:14

(1− β)U = b+
m

λ(m)
β(1− δ)

w(m)− (1− β)U
1− βϕ︸ ︷︷ ︸

≡ρ

. (2)

It states that the flow value of unemployment equals the current period unem-

ployment income b together with an option value from searching, denoted by ρ.

The search value is the probability of finding a job multiplied with the worker’s

discounted job surplus. Since workers have a choice where to search for a job, their

flow value from unemployment must be equal in all markets that attract workers.

Therefore, ρ is a global value that is common to all markets, which means that a

firm has to offer the following wage to achieve matching rate m > 0:

w(m) ≡ b+ ρ+
1− βϕ

β(1− δ)

λ(m)

m
ρ . (3)

This relation says that a firm can only recruit workers when its wage offer matches

the workers’ unemployment value (1−β)U = b+ρ plus a premium which is needed

to attract workers to jobs with filling rate m. This premium is increasing in m,

which is a crucial insight. The relationship between job-filling rates and wage

offers is standard in the competitive search literature.

13Note that unemployed workers are indifferent between all equilibrium search strategies.
Hence this model makes no predictions about the relationship between wages and unemploy-
ment duration.

14Bellman equations for employed and unemployed workers are E = w + β[ϕE + (1 − ϕ)U ]
and U = b+β[mλ(m)−1(1−δ)E+(1−mλ(m)−1(1−δ))U ]. Equation (2) follows by substituting
the first into the second.
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2.2.1 The Firms’ Recruitment Policies

Consider the problem of a firm that takes the search value of unemployed workers

and the associated relationship (3) as given. Later, the search value will be

determined as an equilibrium object that depends on the number of firms and

their wage offers.

Let Jx(L,W ) be the value function of a firm that has productivity x, em-

ploys L workers and is committed to a wage bill of W per period for its current

workforce. Wages are commitments that have to be fulfilled as long as a worker

does not separate. Therefore, the firm has to pay a net present value of existing

commitments of W/(1 − βϕ) independent of its future hiring decisions, which

implies Jx(L,W ) = Jx(L, 0)−W/(1− βϕ). This allows us to focus on Jx(L, 0),

which eliminates the wage bill as a state variable. The firm’s recruitment choices

involve the number of posted vacancies V as well as the job-filling probability m,

which requires a wage offer of w(m). Its recursive profit maximization problem

is expressed as

Jx(L, 0) = max
(m,V )∈[0,1]×R+

xF (L)− C(V, L, x)−D(m)V + β(1− δ)Jx(L+, 0) ,

s.t. L+ = L(1− s) +mV , (4)

where D(m)V ≡ w(m)β(1− δ)/(1− βϕ)mV represents the net present value of

the additional wage commitments for its mV new hires, whose wages are paid

once they enter production next period. The other terms in the first line represent

output, recruitment costs, and the value of continuing with a changed workforce.

The second line says that employment next period consists of the retained workers

and the new hires.

Problem (4) makes it readily apparent that a firm has two channels to hire

workers in a given period. It can increase the number of vacancies and associated
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costs C, or it can increase the filling rate of each job and associated costs D. Note

that both C(·, L, x) and D(·) are convex - the latter inherits this from matching

function λ(m). This implies that firms use both recruitment channels if they want

to hire faster: more vacancies and higher matching rates per vacancy. This can

readily be seen from the optimality conditions for the control variables in (4).

These are derived rigorously in Appendix A, but we provide some intuition here

for the main trade-offs. The optimal choices for the number of vacancies and their

matching probability are governed by one intratemporal and one intertemporal

optimality condition.

Regarding the intratemporal optimality condition, consider a firm that aims

to hire H workers in this period. It faces the problem of choosing the number

of vacancies and the job-filling probability to minimize costs C(V, .) + D(m)V

subject to H = mV . The first-order condition for this problem is

C1(V, L, x) = D′(m)m−D(m) = ρ[mλ′(m)− λ(m)] . (5)

This links the marginal recruitment costs to the marginal increase in wage costs

associated with increases in the job-filling probability.

Relationship (5) offers a number of insights. It defines the optimal policy for

vacancy postings V = V x(m,L) as a function of the job-filling rate and firm

size. Because of convex recruitment costs, this policy function is increasing in m;

thus, vacancy postings and job-filling rates are complementary tools in the firm’s

recruitment strategy. This captures the basic stylized fact highlighted by Davis

et al. (2013) that firms use both more vacancies as well as higher job-filling rates

to achieve faster growth.15 In contrast, under constant marginal recruitment

costs (C1(V, L, x) = c), as assumed in much of the literature, the job-filling rate

15The first equation in (5) suggests that this argument holds in a broader class of models
in which firms can influence job-filling rates. In our model, job-filling rates are increased via
higher wage offers which reflects the allocative role of wages in the labor market.
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would be constant and independent of firm characteristics, while all employment

adjustment is instantaneous and is achieved through the number of vacancies.

Finally, note that equation (5) balances the wage costs for new hires against

recruitment costs at a unique point, which shows why a firm would not want to

offer different wages at a given point in time even if this were permissable.

The firm also decides how to structure hiring over time. This is governed by

an intertemporal optimality condition which reads

xF ′(L+)− C2(V+, L+, x)− b− ρ =
ρ

β(1− δ)

[
λ′(m)− βϕλ′(m+)

]
. (6)

Here L+, V+, and m+ are employment, vacancy postings and the job-filling rate

in the next period. The left-hand side of (6) gives the marginal benefit of a higher

workforce in the next period. If this is high, then the firm rather hires more now

than to wait and hire next period, as expressed by the right-hand side which is

increasing in the current job-filling rate m and decreasing in m+. In particular, a

more productive firm wants to achieve fast growth by offering a more attractive

contract now rather than later, thus raising the current job-filling rate. Equation

(6) implicitly defines the optimal job-filling policy mx(L). Starting from L = 0,

this determines the firm’s growth path through L+ = L(1− s) +mx(L)V , where

V = V x(mx(L), L) comes from the static optimality condition (5).

An illustration how a firm grows over time is provided in Figure 1 which shows

the phase diagram in (L,m) space for the firm’s problem with recruitment costs

C(V, L, x) = xF (L)−xF (L−hV )+cV for which the optimality conditions become

especially tractable.16 Initially the firm is small and the optimal job-filling rate

16In Lemma A.3 of the Appendix we show that equations (5) and (6) simplify to only one
equation linking mt and mt+1, which is independent of Lt. This equation has a unique long-run
job-filling probability m∗ > 0 if h is low enough, and mt converges to m

∗ from any initial value
m0 > 0. Employment adjusts according to Lt+1 = Lt(1 − s) +mtV

x(mt, Lt). Using (5), it is
easy to see that the curve Lt+1 = Lt is downward-sloping in (L,m) space, so that the saddle
path lies above this curve when Lt < L∗.
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exceeds the long-run rate m∗. This rate is the firm’s policy after it converges

to its long-run optimal size L∗ > 0 where it only conducts replacement hiring.

The downward-sloping saddle path depicts the firm’s policy function mx(L) and

describes the adjustment process to the long-run optimal size, along which the

firm spreads recruitment costs over time. This is in contrast to a model with

linear recruitment costs in which firms would jump directly to (L∗, m∗). In terms

of comparative statics, this example also shows that the stationary firm size and

the job-filling rates along the transition depend positively on x: a more productive

firm grows larger and offers higher lifetime wages on its transition to the long-run

employment level. The following proposition and its corollaries provide broader
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Figure 1: The firm’s optimal recruitment policy follows the declining saddle path.

comparative statics results. The job-filling rate is linked via (3) to the wage offer,

so that the findings carry over to the net present value of wages to new hires.17

17These characterization results depend crucially on the supermodularity of the value func-
tion, which renders this proof non-trivial. While standard techniques (Amir (1996)) can be
applied when the cost function is independent of firm size and productivity, this is not true in
general, as we discuss in Appendix A.
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Proposition 1: Consider recruitment cost functions satisfying property (C).

The firm’s value function Jx(L,W ) is strictly increasing and strictly concave

in its workforce L, strictly increasing in productivity x, strictly supermodular in

(x, L) and decreasing in the worker’s search value ρ. The job-filling rate mx(L)

is strictly increasing in productivity x and strictly decreasing in the workforce

L. Posted vacancies V x(m,L) are increasing in L and strictly increasing in the

desired job-filling rate m.

Since these results hold for any search value ρ, they also apply when this value

is determined in general equilibrium. These results imply relationships between

size, productivity, pay, and hiring:

Corollary 1: Consider recruitment cost functions satisfying property (C).

Conditional on size, more productive firms pay higher lifetime wages and have

a higher job-filling rate. Conditional on productivity, younger/smaller firms pay

higher lifetime wages and have a higher job-filling rate.

In Appendix A we also prove the following connection to firm growth rates.

Corollary 2: If recruitment costs are given by either specification in (1) with

parameter h sufficiently small, more productive firms have a higher growth rate,

conditional on size; and larger/older firms have a lower growth rate, conditional

on productivity.

While it already follows from (5) that vacancy postings and job-filling rates

are positively related, the two corollaries link these policies to the firm’s growth

rate. They point out that job-filling rates and firm growth rates are positively

correlated, depending positively on x and negatively on L. This cross-sectional

relationship has been highlighted recently by Davis et al. (2013), and we further

explore in Section 3 how well our model captures this quantitatively. Further-

more, since higher job-filling rates are directly associated with higher earnings for

new hires, the two corollaries also imply that faster-growing firms offer higher life-

time wages. Belzil (2000) documents such patterns after controlling for size and
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worker characteristics; he shows that wages, particularly those of new hires, are

positively related to a firm’s job creation. Our findings that younger firms grow

faster (conditional on survival) and pay higher wages (to workers with the same

characteristics) are consistent with the evidence (see Haltiwanger et al. (2013),

Brown and Medoff (2003) and Schmieder (2013)). Moreover, a positive wage-size

relation emerges in our model if the dispersion in productivity is large enough.18

2.2.2 General Equilibrium and Efficiency

Free entry of firms implies that no entrant makes a positive profit, that is,

∑
x∈X

π(x)Jx(0, 0) ≤ K , (7)

with equality if entry is positive. This condition implicitly pins down the work-

ers’ job surplus ρ and therefore the relationship between wages and job-filling

rates. In a stationary equilibrium, a constant mass of N0 firms enter the market

in every period, so that there are Na = N0(1 − δ)a firms of age a in any period.

Let (Lx
a, m

x
a, V

x
a , w

x
a)a≥0 be the employment/recruitment path for a firm with pro-

ductivity x. Then, a firm of age a has Lx
a employed workers, and λ(mx

a)V
x
a unem-

ployed workers are searching for jobs with offered wage wx
a . Therefore, the mass

of entrant firms N0 is uniquely pinned down from aggregate resource feasibility:

1 =
∑
a≥0

N0(1− δ)a
∑
x∈X

π(x)[Lx
a + λ(mx

a)V
x
a ] . (8)

This equation says that the unit mass of workers is either employed or unem-

ployed. We now define a stationary equilibrium.

18We note that enough productivity dispersion is also required in models with intra-firm
bargaining, and even more so because wages of all workers decline in a growing firm.

16



Definition: A stationary competitive search equilibrium is a list(
ρ,N0, (L

x
a, m

x
a, V

x
a , w

x
a)x∈X,a≥0

)
with the following properties. Unemployed work-

ers’ job search strategies maximize utility: (3) holds for all (wx
a , m

x
a). Firms’ re-

cruitment policies are optimal: (Lx
a, m

x
a, V

x
a )a≥0 solve (4) for all x ∈ X. There is

free entry of firms: (7) and N0 ≥ 0 hold with complementary slackness. Aggregate

resource feasibility (8) holds.

Since the firms’ behavior has already been characterized, it remains to explore

equilibrium existence and uniqueness.

Proposition 2: A stationary competitive search equilibrium exists and is

unique. There is strictly positive firm entry provided that K is sufficiently small.

The previous section already outlined that this model generates sensible rela-

tionships between productivity, size, growth, and job-filling rates. It is relevant

to understand whether these patterns are actually socially efficient, especially

since existing models with intra-firm bargaining always entail inefficiencies, as

discussed in the introduction. In line with earlier literature (e.g., Moen (1997)),

we establish that a competitive search equilibrium is socially efficient. A planner

who decides at each point in time about entry, vacancy postings and job filling

rates for all firms would choose exactly the same solution.

Proposition 3: The stationary competitive search equilibrium is socially op-

timal.

The efficiency of equilibrium can be linked to a variant of the well-known

Hosios (1990) condition.19 It says that efficient job creation requires that the

19See also the Hosios condition in a large-firm model with intra-firm bargaining in Hawkins
(2014). While an appropriate version of this condition is satisfied in many competitive search
models, it can fail in the presence of intensive decision margins despite wage commitments;
cf. Galenianos and Kircher (2009) and Guerrieri (2008). Their efficiency failures seem to be
driven by intensive margins on the workers’ side (search behavior or work effort), which are
not internalized by the wage contracts. In our model, extensive and intensive decision margins
are on the firms’ side and are fully internalized. This point is reminiscent of efficient capacity
decisions by firms in static directed search models (cf. Geromichalos (2012) and Godenhielm
and Kultti (2014)).
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firm’s surplus share for the marginal vacancy is related to the elasticity of the

matching function. Write the workers’ search value ρ = m
λ(m)

Sw as the product

between the match probability and the worker’s job surplus Sw. Then, equation

(5) can be rewritten as

C1(V, L, x) =
1− εm,λ
εm,λ

mSw ,

where εm,λ = λ(m)
λ′(m)m

∈ [0, 1] is the matching-function elasticity.

2.3 Productivity Shocks and Firm Dynamics

In this section we consider much richer dynamics and show that tractability is

retained. In the presence of firm-specific and aggregate productivity shocks we

cannot only explore the two margins of job creation (firm entry and firm growth),

but also the two margins of job destruction (firm exit and firm contraction). A

non-trivial endogenous exit margin arises only if operating costs f are strictly

positive; otherwise low-productivity firms rather continue with zero workers than

to exit.

The incorporation of productivity shocks allows us to study in Section 3 to

which extent the model can quantitatively account for the micro-level hetero-

geneity in the firms’ recruitment behavior and how it performs over the business

cycle. In light of the aforementioned efficiency result and to simplify the exposi-

tion, we start to describe and characterize the planning problem before we show

its equivalence to a competitive search equilibrium.

2.3.1 The Planning Problem

The planner decides at each point in time about firm entry and exit, layoffs

and hires (i.e. vacancy postings and matching probabilities) for all firm types,
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knowing that matching probability m requires λ(m) unemployed workers per

vacancy. For a firm of age a ≥ 0, let xa = (x0, . . . , xa) ∈ Xa+1 denote the

history of idiosyncratic productivity, and let zt = (z0, . . . , zt) ∈ Zt+1 be the

history of aggregate states at time t with corresponding probability ψ(zt). In

a given aggregate history zt, we denote by N(xa, zt) the mass of firms of age a

with idiosyncratic history xa. L(xa, zt) is the employment stock of any of these

firms. At every history node zt and for every firm type xa, the planner decides an

exit probability δ(xa, zt) ≥ δ0, a separation rate s(xa, zt) ≥ s0, vacancy postings

V (xa, zt) ≥ 0, and a matching probability m(xa, zt).20 The numbers of firm

types change between periods t and t+1 according to the Markov chains for the

productivities and the planner’s exit decision:

N(xa+1, zt+1) = [1− δ(xa, zt)]π(xa+1|xa)ψ(zt+1|zt)N(xa, zt) , (9)

and the workforce at any of these firms adjusts according to the planner’s sepa-

ration and hiring decisions:

L(xa+1, zt+1) = [1− s(xa, zt)]L(xa, zt) +m(xa, zt)V (xa, zt) . (10)

At time t = 0, the planner takes as given the numbers of firms that entered

the economy in some earlier period, as well as the employment stock of each of

these firms. Hence, the state vector at date 0 is summarized by the initial firm

distribution (N(xa, z0), L(xa, z0))a≥1,xa∈Xa+1. In a given history zt, the planner

20 To save on notation, we do not allow the planner to discriminate between workers with
different firm tenure. Given that there is no learning-on-the-job, there is clearly no reason for
the planner to do so. Nonetheless, the competitive search equilibrium considered in Section 2.3.2
allows firms to treat workers in different cohorts differently, which is necessary because firms
offer contracts sequentially and are committed to these contracts. See the proof of Proposition
5 for further elaboration of this issue.
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also decides the mass of new entrants N0(z
t) ≥ 0, so that

N(x0, z
t) = π0(x0)N0(z

t) and L(x0, z
t) = 0 . (11)

The sequential planning problem is to maximize the expected discounted output

net of entry costs, opportunity costs of work, and operating and recruitment

costs:

max
δ,s,V,m,N0

∑
t≥0,zt

βtψ(zt)

{
−K(zt)N0(z

t) +
∑

a≥0,xa

N(xa, zt)
[
xaztF (L(x

a, zt))

−bL(xa, zt)− f − C(V (xa, zt), L(xa, zt), xazt)
]}

, (12)

subject to the dynamic equations for N and L, namely (9), (10) and (11), and

subject to the resource constraints, for all zt ∈ Zt+1,

∑
a≥0,xa

N(xa, zt)
[
L(xa, zt) + λ(m(xa, zt))V (xa, zt)

]
≤ 1 . (13)

This constraint says that the labor force (employment plus unemployment) can-

not exceed the given unit mass of workers. We summarize a solution to the

planning problem by a vector (N,L,V,m, s, δ), with N = (N(xa, zt))a,t≥0 and

similar notation for the other variables.

We show that there is a convenient characterization of a planning solution

which says that hiring, layoff and exit decisions follow a recursive equation at

the level of the individual firm. Specifically, for any existing firm, the planner

maximizes the social value of the firm, taking into account the social value of

each worker tied to the firm. This social worker value is given by the multiplier

on the resource constraint (13) which we denote by μ(zt) and which generally

depends on the initial firm distribution and on the full state history zt.
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A particularly powerful characterization can be obtained under the provision

that firm entry is positive in all states of the planning solution. When this

is the case, the social values of a worker (and thus firm-level value and policy

functions) depend only on the current aggregate state but are independent of the

state history and of the firm distribution.

To gain intuition for this finding, envision any period in which the planner

can assign unemployed workers either to existing firms or to new firms. If there

are many existing firms, there are fewer workers left to be assigned to new firms.

Nevertheless, the social value of any worker that is assigned to a new firm does

not change: Each new firm has an optimal hiring policy, and if less workers

are assigned to new firms, then proportionally less new firms will be created,

leaving the marginal value of each worker unchanged. Therefore, efficient hiring

by existing firms requires their marginal social benefit of hiring to be equal to

the social benefit at the new firms which depends on the aggregate state alone.

To see the independence of value functions from the firm distribution formally,

suppose there are n aggregate states z ∈ Z = {z1, . . . , zn}, and let μi be the

social value of a worker in state zi. Write M = (μ1, . . . , μn) for the vector of

social values. Let G(L, x, i;M) be the social value of a firm with employment

stock L, idiosyncratic productivity x and aggregate productivity zi, satisfying the

Bellman equations

G(L, x, i;M) = max
δ,s,V,m

xziF (L)− bL− f − μi[L+ λ(m)V ]− C(V, L, xzi)

+β(1− δ)Ex,iG(L+, x+, i+;M) , (14)

where maximization is subject to L+ = (1−s)L+mV , δ ∈ [δ0, 1], s ∈ [s0, 1], m ∈
[0, 1] and V ≥ 0. The interpretation of this problem is rather straightforward.

A firm’s social value encompasses flow output net of the opportunity cost of

employment, net of fixed costs and recruitment costs, and net of the social cost
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of workers tied to the firm in this period; these workers include the current

workforce L and also λ(m)V unemployed workers who are searching for jobs at

this firm.

Positive entry in all aggregate states requires that the expected social value of

a new firm is equal to the entry cost,

∑
x∈X

π0(x)G(0, x, i;M) = K(zi) . (15)

This characterization of planning solutions by (G,M) is particularly helpful for

numerical applications. Despite considerable firm heterogeneity, the model can

be solved by a recursive problem on a low-dimensional state space (14) and the

(simultaneous) solution of a finite-dimensional fixed-point problem (15). Im-

portantly, the distribution of firms is irrelevant for this computation. After the

corresponding policy functions have been calculated, firm entry follows as a resid-

ual of the economy’s resource constraint and does depend on the distribution of

existing firms: in every period with aggregate state i, each existing firm with

productivity x and size L attracts V (L, x, i)λ(m(L, x, i)) job seekers according

to the policy functions, while a number N0(z
t) of new firms enter to absorb the

remaining job seekers. Since job-finding prospects differ between firms, the aggre-

gate job-finding rate therefore also depends on the firm distribution, as does the

evolution of aggregate employment, output and job flows. As we see in the next

section, these aggregate variables in fact adjust with delay to aggregate shocks.

Because of the dependence of N0 on the distribution of employment among ex-

isting firms, it cannot generally be guaranteed that the planning solution has

positive entry in all state histories. Therefore, this property can only be checked

ex-post in simulations of the model. Analytically, we prove that any solution of

(14)–(15) which gives rise to positive entry in all state histories describes indeed

a solution to the planner’s problem. We also find that a unique solution of these
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equations exists for small aggregate shocks:

Proposition 4:

(a) Suppose that a solution of (14) and (15) exists with associated allocation

A = (N,L,V,m, s, δ) satisfying N(zt) > 0 for all zt. Then A is a solution

of the sequential planning problem (12).

(b) If K(z), f , and b are sufficiently small and if z1 = . . . = zn = z, equations

(14) and (15) have a unique solution (G,M). Moreover, if the transition

matrix ψ(zj|zi) is strictly diagonally dominant and if |zi − z| is sufficiently

small for all i, equations (14) and (15) have a unique solution.

This reduction of the planning problem permits a straightforward character-

ization of the optimal layoff and hiring policies. For a growing firm, it follows

from the first-order conditions for m and V , similar to equation (5), that

C1(V, L, xzi) = μi[mλ
′(m)− λ(m)] . (16)

As in the previous section, this equation implies an increasing relation between

matching probabilities and the number of posted vacancies at the firm. With

higher m, the planner is willing to post more vacancies at higher marginal re-

cruiting cost. Denote the solution to equation (16) by V = V (m,L, x, i), which

is positive for m > m(L, x, i). The planner’s optimal choice of m for firm (L, x)

in aggregate state i satisfies21

β(1− δ0)Ex,i
dG
dL

(L+, x+, i+;M) = μiλ
′(m) ,

with L+ = L(1− s0) +mV (m,L, x, i). Therefore, the firm hires if and only if

β(1− δ0)Ex,i
dG
dL

(L(1− s0), x+, i+;M) > μiλ
′(m(L, x, i)) . (17)

21Note that δ = δ0 and s = s0 if the firm hires workers.
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Conversely, the planner wants the firm to lay off workers if

Ex,i
dG
dL

(L(1− s0), x+, i+;M) < 0 . (18)

The two conditions (17) and (18) show how the firm’s policy depends on its

characteristics. Small and productive firms recruit workers and grow, whereas

large and unproductive firms dismiss workers and shrink. There is also an open

set of characteristics where firms do not adjust their workforce (cf. Bentolila and

Bertola (1990) and Elsby and Michaels (2013)).

2.3.2 Decentralization

We now show that a competitive search equilibrium gives rise to the same al-

location as the planning solution. Consider firms that offer workers a sequence

of state-contingent wages, to be paid for the duration of the match. They also

commit to cohort-specific and state-contingent retention probabilities. Contracts

are contingent on the idiosyncratic productivity history of the firm at age k, xk,

and on the aggregate state history zt at time t. Formally, a contract offered by a

firm of age a at time T takes the form

Ca =
(
wa(x

k, zt), ϕa(x
k, zt)

)
k>a,t=T+k−a

,

where wa(x
k, zt) is the wage paid to the worker in history (xk, zt), conditional on

the worker being still employed by the firm in that instant. ϕa(x
k, zt), for k > a,

is the probability of retaining the worker at the end of the period, so 1−ϕa(x
k, zt)

is the separation probability.

In Appendix B, we describe the workers’ and the firms’ search problems and

we define a competitive search equilibrium, analogously to the stationary model.

We also prove the following welfare theorem.
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Proposition 5: A competitive search equilibrium is socially optimal.

It is not hard to see that a wage commitment is sufficient for a firm to im-

plement its desired policy, even if it cannot commit to retention rates. Given

risk neutrality, the firm can set the wages following any future history exactly

equal to the reservation wage (i.e. the flow value of unemployment) which is the

sum of unemployment income and the worker’s shadow value, b + μ(zt). It can

achieve any initial transfer to attract workers through a hiring bonus. In this

decentralization, the costs of an existing worker are always equal to his social

value in the alternative: unemployment and search for another job. Since the

flow surplus for any retained worker equals his shadow value, the firm’s problem

in this case coincides with the planner’s problem, so that firing and exiting will

be exactly up to the socially optimal level even though the firm does not commit

to retention rates. Workers do not have any incentive to quit the job unilaterally,

either, because they are exactly compensated for their social shadow value from

searching. If the workers also cannot commit to stay, this is the unique wage

policy that overcomes the commitment problem on both sides of the market and

implements the socially efficient outcome. Alternatively, even a slight degree of

risk aversion on the workers’ side would give rise to flat wage profiles to offer

insurance (cf. Rudanko (2011)). This clarifies that the current model determines

surplus sharing only, whereas the time path of payments depends on additional

details, like the ability to commit to specific actions (see Schaal (2012) for a

related point).

2.4 Extensions

This framework delivers propositions for the cross-section and for the business

cycle under a rich structure of heterogeneity on the side of firms. It abstracts

from a similar richness on the side of the workers, and this section discusses two
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particular concerns: worker heterogeneity and on-the-job search. Both might be

important to capture realistic wage distributions that may be understated in our

setup. They might also affect the costs and benefits of posting vacancies, since

higher wages can attract not only more but also better workers and can induce

them to stay longer. While such extensions go beyond the scope of this analysis,

the following sketches how they could be integrated into this framework. We also

clarify that efficiency is not crucial for our tractability results.

Heterogeneity in worker types requires three adjustments to our setup: pro-

duction functions that accommodate worker heterogeneity; recruitment costs that

may be type-dependent; and contract offers that condition on worker type.22 We

expect an analogue of our steady-state result when costs are type-dependent:

More workers of a particular type can be hired via more vacancies for this type

or via higher wages which attract more of these workers, and curvature in the

cost function implies that firms will use both margins. Aggregation across types

requires further investigation, but technically we expect no particular difficulties.

With aggregate shocks a major technical simplification of our setup arises

since the value of an unemployed worker tracks the current state of aggregate

productivity, independent of the distribution of employment across firms. This

is driven by entrant firms which absorb workers. With worker heterogeneity, a

similar simplification can be expected if there is a separate firm entry margin for

each worker type. If firms specialize on one worker type only, a separate entry

condition for each type arises. For each type the economy can then be solved

as in this paper. Firms may prefer to specialize even if multiple types of hires

are technologically feasible. Eeckhout and Kircher (2012) lay out a tractable

production technology and conditions for sorting in a frictionless economy, and

22If contracts cannot condition on worker types, either because of contractual incompleteness
or imperfect information at the hiring stage, we enter a world of adverse selection which requires
a different approach; see Guerrieri et al. (2010).
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with more stringent conditions on the gains from specialization an extension

of their result might carry over to this setting. While specialized firms clearly

generate tractability, this is not necessary and a much milder requirement should

suffice: if firms specialize only in the entry period (and subsequently hire other

types), we expect the simplification to carry over, as long as there is a separate

entry margin per worker type.

Another extension is to add on-the-job search to our basic setup, similar to

Schaal (2012) and Garibaldi et al. (2014). As discussed in the introduction, the

former assumes linear vacancy costs, which implies that firms always jump to

their optimal sizes. The latter assume linear output in combination with convex

costs and focus on steady states: Firms grow each period by exactly the same

amount and never cease to grow until they exit exogenously. Neither paper

considers convex recruitment costs and business cycles. When firms can hire

unemployed or employed workers, this is akin to worker heterogeneity, and, as

described above, an entry margin for each level of heterogeneity is important for

tractability. We conjecture that entrants’ choice of productivity x at cost K(x)

would give rise to such a specialized entry.23

Finally, we note that efficiency is not crucial for tractability. Tractability arises

when workers can choose to apply to new firms and there is entry of such firms.

The former implies that the utility value of an unemployed worker is linked to new

entrants, and the latter ties this to the entry costs. These remain present, e.g.,

when workers are risk averse. In this case our analysis gives the benchmark of

23Employed workers are similar to unemployed workers, except that their existing job provides
them with a better outside option. Therefore, when comparing job-finding probabilities and
wages, they value the latter more. On the firm side, high-productivity firms care more about
hiring probabilities than about wages. This suggests that high-productivity firms specialize on
workers whose current level of pay is high. The exact details depend on whether contracts can
condition on the worker’s search behavior. Our general contract space allows for back-loaded
wages, which tend to be important to reduce inefficiencies associated with on-the-job search.
See Section 2.3.2 for more details on how to solve commitment problems in our setting, and
Schaal (2012) for a longer discussion and literature review in the context of on-the-job search.
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perfect insurance markets. In the absence of private or public insurance, workers

search too much for low-paying but easy-to-get jobs (as in Acemoglu and Shimer

(1999)), leading to excess employment in low-productivity firms and therefore to

a misallocation of labor among heterogeneous firms. This can be studied in a

tractable manner in an adaptation of our framework.

3 Quantitative Exploration

The previous section outlined that this model can capture important features

at the micro level (e.g. varying job-filling rates) and it is tractable for studying

business cycle dynamics with potentially sluggish adjustment of aggregate vari-

ables. In this section we calibrate our model to the U.S. labor market in order to

investigate how well it is able to quantitatively account for the main features in

the data. We first explore the model’s cross-sectional properties, showing among

other results how it generates differential job-filling rates as in Davis et al. (2013).

We then show that the same parameterizations give rise to aggregate sluggishness

and other business cycle features. We conclude with a short exploration of the

effects of hiring credits for business-cycle stabilization.

3.1 Calibration

We briefly sketch the model calibration, referring to Appendix C for more de-

tails. The parameter choices are summarized in Table 1. We calibrate the model

at weekly frequency and choose firm-specific permanent productivities (xi0) and

shares at entry (σi) to match the firm and employment shares of the Census Bu-

reau’s Business Dynamics Statistics (BDS) for the five size classes 1−49, 50−249,

250−999, 1000−9999 and ≥ 10000.24 Exit probabilities (δi) are chosen to match

24We calibrate the model to match the size distribution of firms (rather than establishments).
We note that those results relating to establishment-level statistics (e.g. Figure 3) are robust
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annual firm exit rates from the BDS. To capture some features of employment

dynamics, we also have a transitory component x1 of firm productivity which

is redrawn from interval [1 − x, 1 + x] with probability π in each period. The

returns-to-scale parameter α in the production function x0x1L
α is calibrated to

yield a plausible labor income share.

Table 1: Parameter choices in the benchmark calibration.

Parameter Value Description

β 0.999 Annual interest rate 5%
k 6.276 Matching function scale parameter
r 1.057 Matching function elasticity parameter
α 0.7 Production function elasticity
c 8.317 Recruitment cost scale parameter
γ 2 Recruitment cost elasticity parameter

(xi0) (.366, .736, 1.166, 2.031, 4.138) Employment shares (5 size classes)
(σi) (98.82, 1.0, .153, .025, .002)% Firm shares (5 size classes)
(δi) (1.71, .27, .16, .088, .016)� Exit rates
x 0.312 Transitory productivity range
π 0.027 Adjustment probability
b 0.1 Unemployment income (b/w ≈ 0.7)
K 329.6 Entry cost
s0 0.48% Quit rate

For the recruitment technology, we choose the employment-scaled form25

C(V, L, x) = c
1+γ

(V
L
)γV . In our benchmark calibration we take a cubic function

(γ = 2). While this relates to Merz and Yashiv (2007) who estimate a similar

cubic hiring technology,26 we take an agnostic view about this parameter value.

Therefore, we compare the benchmark results with those obtained with a nearly

linear recruitment technology (γ = 0.1) and with a much higher elasticity (γ = 8).

when we restrict the model sample to the first three size classes which largely represent one-
establishment businesses.

25To avoid division by zero at entrant firms, we assume that actual labor input L̃ = 1+L is
the sum of the labor inputs of the (single) owner and of the employed workers.

26As mentioned before (footnote 7), their estimation results are not applicable to our model.
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In all versions, the scale parameter c is calibrated to match our target for the

weekly job-filling rate.

Unemployment income b is set at roughly 0.7 of the average wage which cor-

responds to the calibrated value of non-market work chosen by Hall and Mil-

grom (2008) and Pissarides (2009). Since wages are rather close to the average

employment-weighted marginal product, this unemployment value equals 67 per-

cent of marginal product and 47 percent of labor productivity. As this value

of b implies rather small labor market responses to aggregate shocks, we also

consider a much higher unemployment value, namely 97.7 percent of the average

wage which corresponds to the choice of Hagedorn and Manovskii (2008) and

generates more amplification. While we report the cross-sectional results for the

benchmark value of b, further robustness regarding this parameter, as well as

regarding the returns-to-scale parameter, is explored in Appendix D.

3.2 Cross-Sectional Implications

We first simulate the model for a stationary cross-section of firms. Besides match-

ing the calibration targets, our model generates negative relationships between

firm size and the shares of younger firms in the cross-sectional distribution (see

Table 2) which are roughly in line with the data. Particularly, the model can

generate the observation that a substantial share of large firms is rather young

which indicates that some firms are able to grow quickly (cf. Luttmer (2011)).

This is also confirmed in Figure 2 which shows that the model does a good job

in matching the firm-age distribution.

Our model can also account for the observation that job creation and destruc-

tion rates are falling in firm size, although less strongly than in the data. Similar

negative relationships between firm size and job flows are obtained at entrant

and exiting firms (see Table 6 in Appendix C). Table 3 shows the distribution of
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Table 2: Firm size and employment distribution

Size class 1–49 50–249 250–999 1000–9999 ≥ 10000

Data
Firm shares 95.62 3.64 0.54 0.17 0.02
Employment shares 29.31 16.23 10.88 17.64 25.93
% younger than 2 yrs. 24.68 7.24 4.38 2.26 1.08
% younger than 5 yrs. 39.71 16.88 10.19 5.35 3.65
% younger than 10 yrs. 57.76 31.30 20.23 12.01 7.14

Model
Firm shares 95.85 3.41 0.55 0.17 0.02
Employment shares 29.77 15.71 11.33 18.78 24.41
% younger than 2 yrs. 16.16 2.99 2.35 1.77 1.48
% younger than 5 yrs. 35.53 8.46 6.96 5.32 4.62
% younger than 10 yrs. 58.31 16.88 13.92 11.11 9.85

Notes: The top two rows report firm and employment shares in five size classes (calibrated).

The bottom rows are the shares of younger firms in these classes. Data statistics are from the

Business Dynamics Statistics of the Census Bureau for the year 2005. Model statistics are from

a cross section of 4.9 · 106 firms for the benchmark model (γ = 2).

quarterly employment growth rates across firms. Our model performs reasonably

well in reproducing the overall pattern that more than half of employment is at

firms that grow or shrink by more than five percent in a quarter.

One dimension of particular interest is the relationship between employment

growth, the vacancy rate and the vacancy yield, which are positively related for

growing firms in the Job Openings and Labor Turnover Survey (JOLTS), see

Davis et al. (2013). This indicates that the matching rate varies across firms, a

feature that is not present in most standard models. To see whether our model

can trace this relationship quantitatively, we calculate monthly model statistics

for hires, vacancies, layoffs and employment growth rates.27 Figure 3 shows the

27When Lt−1 and Vt−1 denotes employment and vacancies at the end of month t− 1 and Ht

are hires during month t, the hires rate is ht = Ht/Lt−1, the vacancy rate is vrt−1 = Vt−1/Lt−1

and the vacancy yield is vyt = Ht/Vt−1, so that ht = vrt−1v
y
t . We use this definition, which is

slightly different from Davis et al. (2013), for the model and data statistics. We are grateful to
Jason Faberman for providing these data.
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Figure 2: Cross-sectional relationships between firm age in years and
firm/employment shares. The dashed curves are from the Business Dynamics
Statistics of the Census Bureau for the year 2005. Model statistics (solid) are
from a cross section of 4.9 · 106 firms for the benchmark model (γ = 2).

cross-sectional relationships from the data and for the three parameterizations

of our model.28 In the data, firms grow larger both by posting more vacancies

and by filling vacancies faster, with the vacancy yield accounting for most of the

variation. The benchmark calibration with a cubic recruitment cost function can

account for around two thirds of the observed variation in vacancy yields (see

the blue (solid) curve in the upper right graph). Employers that expand more

rapidly offer more attractive contracts and fill these vacancies faster. There can

be many different reasons why vacancy yields are higher in faster-growing firms.

For example, strongly expanding firms may search more intensively or they may

use alternative recruitment channels. Time aggregation can also account for

part of this variation; see Davis et al. (2013) for a discussion. Our benchmark

results suggest that competitive search can be one important, but perhaps not

the only, mechanism responsible for the observed heterogeneity in vacancy yields

and vacancy rates.29

28To smooth the relationships, all figures in the graphs are calculated as five-bin centered
moving averages, as in Davis et al. (2013).

29Venkateswaran (2013) considers idiosyncratic shocks to the matching technology to account
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Table 3: Distribution of employment growth

Growth rate interval Data Model (γ = 2)
-2 (exit) 0.7 0.4
(−2,−0.2] 7.5 8.8

(−0.2,−0.05] 16.5 16.3
(−0.05,−0.02] 9.6 5.0
(−0.02, 0.02) 30.9 31.4
[0.02, 0.05) 9.9 8.9
[0.05, 0.2) 16.7 16.1
[0.2, 2) 7.5 13.1
2 (entry) 0.7 0.1

Notes: The table reports employment shares for intervals of quarterly employment growth

rates. The empirical distribution is taken from Table 2 of Davis et al. (2010). Model statistics

are calculated for the benchmark calibration from a cross-section of 4.9 · 106 firms.

Figure 3 further shows the results for the nearly linear recruitment technology

(γ = 0.1) and for the one with higher curvature (γ = 8). With linear vacancy

costs, weekly vacancy yields m are constant and hence do not vary with employ-

ment growth. Variations in the monthly vacancy yield are solely explained by

time aggregation. The green (dotted) curve in the upper right graph of Figure 3

shows that the vacancy yield is indeed nearly flat for employment growth below

20 percent. Time aggregation (i.e., firms post and fill unrecorded vacancies dur-

ing the month) accounts for the variation in vacancy yields beyond that point.

On the other hand, as indicated by the red (closely dashed) curves in the figure,

our model can principally account for the full variation in vacancy yields and

vacancy rates if the curvature of the recruitment technology is sufficiently large.

On a related note, Davis et al. (2013) show that vacancy yields (and vacancy

rates) vary substantially by industry and employer size groups. While we have

for the correlation between employment growth and vacancy yields. To what extent fast-growing
firms use higher wages to fill their jobs faster cannot be answered for US firms due to lack of
firm-level wage data. It should be interesting, however, to explore this question for European
countries where matched employer-employee data (combined with firm-level vacancy numbers)
are available.
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Figure 3: Cross-sectional relationships between monthly employment growth and
the vacancy rate, the vacancy yield, the hires rate and the layoff rate. The dashed
curves (in the first three graphs) are from the data used in Davis et al. (2013),
the blue (solid) curves are for the model with cubic recruitment costs (γ = 2),
the green (dotted) curves are for γ = 0.1 and the red (closely dashed) curves are
for γ = 8. Model statistics are calculated from a cross-section of 4.9 · 106 firms.

not introduced industry-specific parameters into our model, we can study the

effect of size and find that smaller employers indeed have higher vacancy yields,

albeit the variation is smaller than in the data. Specifically, in our benchmark

calibration the vacancy yield at firms with less than 50 workers exceeds the one at

firms with more than 500 workers by 10 percent, while in the data the difference

is almost a factor of two.30

30We expect that more flexible forms of the recruitment technology should give larger varia-
tion by employer size: for instance, if C had decreasing returns in (V, L), vacancy postings in
larger firms would be less costly so that these firms prefer to recruit less intensively, reducing
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The bottom graphs in Figure 3 show that our model largely accounts for the

relationships between employment growth, hires rates and layoff rates, both for

growing and for shrinking firms, and regardless of the curvature parameter in the

recruitment technology.31

3.3 The Business Cycle

To explore business cycle dynamics, we feed in aggregate productivity shocks and

solve the model as outlined in Section 2.3.1. Here we compare two parameteriza-

tions of this model, one with the benchmark value of unemployment income and

the other with a higher value of b (see the previous discussion). The aggregate

productivity parameter can attain one of five equally distant values in the interval

[zmin, 2 − zmin], and the Markov process for z is a mean–reverting process with

transition probability ψ, as described in Appendix C of Shimer (2005). The two

parameters (zmin, ψ) = (0.93, 0.015) are set to match a quarterly standard devi-

ation and autocorrelation of labor productivity around trend of 0.015 and 0.76.

We allow the entry cost K to vary with the aggregate state, so as to stabilize the

volatility of job creation at opening firms. For further details, see Appendix C.

Table 4 shows the outcome of this experiment for volatility and comovement

with aggregate output. While both parameterizations reproduce the observed co-

movement with output, only the calibration with high opportunity cost of work is

able to generate amplification of labor market variables which is of a similar order

of magnitude as in the data. Relative to a model with homogeneous firms (Hage-

dorn and Manovskii (2008)), firm heterogeneity and decreasing returns seem to

add no more amplification.32 In terms of correlation patterns, our model pro-

job-filling rates further.
31For the empirical relationship between employment growth and layoffs, see Davis et al.

(2010) who find that layoffs dominate quits for large employment contractions. In our model,
the quit rate is exogenous at s0 so that variations in layoffs necessarily capture all variations
in separations.

32This is consistent with Krause and Lubik (2007), Faccini and Ortigueira (2010) and Hawkins
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duces procyclical job-finding rates and countercyclical separation rates. We also

note that the correlation between labor productivity and the job-finding rate is

positive but imperfect. This contrasts with Shimer’s (2005) calibration of the

standard search and matching model with homogeneous firms where this corre-

lation is perfect, and we will elaborate below on differences in the propagation of

shocks.33

Table 4: Business cycle statistics

Data Model (low b) Model (high b)

Rel. Corr. w. Rel. Corr. w. Rel. Corr. w.
vol. output vol. output vol. output

Productivity 0.67 0.885 0.93 0.970 0.66 0.930
Unemployment 6.55 -0.829 2.88 -0.381 6.16 -0.827

Vacancies 6.81 0.428 1.20 0.390 3.93 0.506
Job–finding rate 3.86 0.812 1.15 0.484 3.06 0.884
Separation rate 2.67 -0.575 2.66 -0.230 3.39 -0.782
Vacancy yield 5.88 -0.790 1.54 -0.639 4.80 -0.941

Recruiting intensity 1.00 0.871 0.56 0.340 1.37 0.841

Notes: All variables are logged and HP filtered with parameter 1600. Relative volatility

measures the standard deviation of a variable divided by the standard deviation of output.

Data are for the U.S. labor market (1951-2011), except the job–finding rate and separation

rate series (1951-2007) which were constructed by Robert Shimer (see Shimer (2012) and his

webpage http://sites.google.com/site/robertshimer/research/flows) and the vacancy yields and

recruiting intensity series (2001-2011) which were constructed by Davis et al. (2013). Monthly

series are converted in quarterly series by time averaging. The model statistics are obtained

from 20 simulations of 5 · 105 firms over a period of 2080 weeks. Weekly series are converted

into quarterly series by time averaging.

The last two rows of Table 4 show that our model captures the volatility and

comovement of the aggregate vacancy yield and of the recruiting intensity as

calculated by Davis et al. (2013) for JOLTS data, 2001-2011. In particular, we

(2011) who obtain little amplification of technology shocks in labor market models with multi-
worker firms and intra-firm bargaining.

33The model correlations between labor productivity and the job-finding rate are 0.30 (low
b) and 0.79 (high b), while the data counterpart (1951–2007) is 0.56.
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can decompose the aggregate vacancy yield as

H

V
= m̃(λ)

∑
i

mi

m̃(λ)

Vi

V
≡ m̃(λ)r , (19)

where H , V are aggregate hires and vacancies, λ is the aggregate unemployment-

vacancy ratio, m̃ is the reduced-form matching function (that is, the inverse of

λ(.), cf. footnote 10), and (mi, Vi) are recruitment policies of firm i. Since λ is

countercyclical, so is the aggregate vacancy yield, although less than a standard

aggregate matching function would predict. The term r in equation (19) is a

measure of the (vacancy-weighted) “recruiting intensity” which turns out to be

procyclical, both in the data and in the model with γ = 2.34 The reason why

r is procyclical in our model is that m̃ is concave and that the cross-sectional

dispersion of λi (mi) is countercyclical.
35

To give a brief impression of the cyclicality of wages we have to take a stance on

the wage profile over time. Although our theory determines mainly the present

value of wages, consider flat wage contracts as an empirically relevant special

case. With this specification, we find that aggregate wages are procyclical and

rigid, while wages for new hires are more volatile. In particular, the elasticity

of wages for all workers (new hires) with respect to productivity is 0.06 (0.60)

for the calibration with high unemployment income, which compares with the

estimates of Haefke et al. (2013) who report elasticities in the range 0.1-0.3 (0.6-

1). Other implementations are clearly conceivable that would give rise to greater

wage cyclicality, but it is good to know that our model can account for substantial

wage rigidity.

34Our measure of the recruiting intensity corresponds to the variable q1−α
t in equation (9) of

Davis et al. (2013). We set α = 0.5 as in their paper to calculate the moments in Table 4.
35This seems consistent with the observation of Davis et al. (2012) that the cross-industry

dispersion of job-filling rates increased during the Great Recession. We note that the procycli-
cality of r vanishes in our model with nearly linear recruitment costs (γ = 0.1) because all firms
fill vacancies at the same matching rate.
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Finally, we illustrate the role of recruitment frictions for propagation of ag-

gregate shocks by considering the model response to a permanent increase in the

aggregate productivity parameter by one percent. In response to such a shock,

we let entry costs increase by the same factor.36 The new steady-state equilib-

rium features more firms and higher aggregate output. In Figure 4, we compare

impulse responses for the three calibrations with different curvature parameters,

where unemployment income is set to the high value. Relative to the model with

nearly linear recruitment costs, convex costs generate a pronounced labor market

propagation, featuring sluggish adjustments of the job–finding rate and of the

vacancy–unemployment ratio, which are similar to the responses of these vari-

ables to a permanent productivity shock in vector autoregressions (see Appendix

E for details). Fujita and Ramey (2007) and Shimer (2005) argue that standard

search and matching models cannot generate such patterns because market tight-

ness and the job-finding rate are jump variables which correlate perfectly with

aggregate productivity.37 The bottom graphs in Figure 4 show that this is also

true in our model when vacancy costs are linear,38 but not when they are convex

in which case both variables lag behind aggregate productivity by 2-3 quarters.

We emphasize that the sluggish model dynamics come about for the same pa-

rameterizations of the recruitment technology which also give rise to plausible

variations of vacancy yields across firms. Micro-level features are thus directly

linked to the dynamics at the aggregate level. Lagged responses to productiv-

36Without the proportional increase in entry costs, firm entry would exhibit an implausible
spike at the time of the shock. There are many reasons why entry costs vary with the business
cycle, e.g. procyclical rental rates, capital prices, or outside opportunities of entrepreneurs.
Regarding the latter, endogenous entrepreneurship could be easily introduced in our framework
when unemployed workers have the option to either search for jobs or to start a business. We
expect that efficiency and tractability would be preserved.

37There may be other departures from the standard model that break this result. By adding
worker heterogeneity, for example, the composition of workers in the unemployment pool de-
termines the aggregate job-finding rate (cf. Robin (2011)) which may contribute to persistent
dynamics.

38Equation (16) implies that m is a function of the aggregate state μi alone if marginal
vacancy costs are constant.
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Figure 4: Impulse response to a permanent 1% increase in aggregate productivity.
The dashed curves are responses from a VAR for U.S. data (see Appendix E for
details), the blue (solid) curves are for the model with cubic recruitment costs
(γ = 2), the green (dotted) curves are for γ = 0.1 and the red (closely dashed)
curves are for γ = 8. All three versions have unemployment income b ≈ 0.977 ·w.

ity shocks are neither picked up by most (homogeneous worker) random search

models, nor by existing models with directed search, such as Shi (2009), Menzio

and Shi (2010, 2011), and Schaal (2012). In our model, convexity of recruitment

technologies in combination with the entry of new firms contribute to the delayed

response of the labor market: the positive shock triggers a surge of entrant firms

who create only few jobs when they are small but more as they grow larger. With

linear recruitment costs, all firms (young and old) would directly jump to their

optimal sizes.
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3.4 Policy Experiment: The Effects of Hiring Subsidies

We provide some first exploration of the positive implications of policy inter-

ventions in our environment. Despite efficiency of the laissez-faire equilibrium

in this model with risk-neutral workers, a social planner with inequality aver-

sion and absent sufficient redistributive instruments would want to distort the

first-best outcome so as to reduce unemployment. Alternatively, a policy maker

with a direct concern about aggregate unemployment (or output) would have an

interest to intervene, possibly in a cyclical way. We focus on hiring subsidies

(hiring credits) which have been extensively deployed to stimulate job growth in

past recessions and have received renewed attention during the Great Recession.39

It might be conjectured that they stabilize business cycle fluctuations, especially

when they are used in a counter-cyclical manner. However, we find that this is not

the case. We compare time-invariant and counter-cyclical subsidies, financed by

lump-sum taxes. The model is solved as the solution to a quasi-planner’s problem

who maximizes social welfare subject to given government policy (cf. Veracierto

(2008)). We set the subsidy per hire to 0.015 which corresponds to 3.4% of a

monthly wage so that government expenditures on hiring subsidies are 0.1 per-

cent of output. With a counter-cyclical policy, hiring firms receive the subsidy

only when the aggregate productivity state is below its mean. Since our model

calibration with a high value of unemployment benefits generates more plausible

aggregate dynamics, we use this calibrated version for the policy experiments.

Table 5 shows the outcome of the policy simulations. While both policies suc-

ceed in stabilizing the job-finding rate to some extent, they considerably increase

the volatility of separations, so that they are not successful to stabilize unemploy-

ment fluctuations. Perhaps surprisingly, the destabilizing forces are stronger for

39The Hiring Incentives to Restore Employment Act (HIRE) of 2010 includes tax exemptions
from employer social security contributions and business income tax breaks for workers hired
from unemployment; hiring credits were also an element of the American Jobs Act proposed
by the Obama administration in 2011. For an overview, see Neumark (2013).
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the counter-cyclical policy which ultimately yields higher unemployment volatil-

ity compared to a laissez-faire situation.

Table 5: Business cycle effects of hiring subsidies

Laissez Stationary Cyclical
faire policy policy

Unemployment 15.5 15.5 16.3
Vacancies 9.8 7.1 8.2

Output 2.5 2.4 2.4
Job–finding rate 7.7 6.0 6.0
Separation rate 8.5 11.2 11.8

Notes: The table reports the standard deviations of logged and HP filtered (parameter 1600)

quarterly variables, where model statistics are obtained as in Table 4.

The intuition for these findings is that hiring subsidies make firms more prone

to fire their employees in adverse idiosyncratic or aggregate states, i.e., labor

hoarding is less beneficial. Firms optimally decide to lay off more workers since

wages increase in response to the policy, which happens because entrant firms

continue to make zero expected profits and the subsidy gets passed through into

increased wages. Higher wages make firms more eager to fire in bad states and

the subsidy makes them more eager to hire in good states. Even in steady state

with only idiosyncratic shocks, both the separation and the hiring rate increase

by 8 percent in response to the (time-invariant) policy, which results in more

worker reallocation between employment and unemployment, so that the steady-

state unemployment rate increases by half a percentage point. Over the business

cycle, time-invariant hiring subsidies induce firms to fire more workers for any

given productivity level, because wages rise in all aggregate states. This is illus-

trated in Figure 5(a) which shows the employment growth policy of a particular

firm (the one with median transitory and permanent idiosyncratic productivity),

both in the lowest and in the highest aggregate state. For a given employment

level, separations are higher under the policy (dashed curves) than under laissez
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faire (solid curves). At the same time, firms grow to a smaller size in the low-

productivity state, though not in the high-productivity state. This explains why

separations are more volatile under the stationary policy compared to laissez-

faire. The volatility of separations increases further under the cyclical policy

which leads to higher wages in the lowest aggregate states only. Hence firms find

it optimal to lay off more workers during recessions and fewer workers during

booms, which is shown in Figure 5(b) where separations increase only in the

low-productivity state.

(a) Stationary policy (b) Cyclical policy

Figure 5: Employment growth for varying employment levels of an exemplary
firm in the lowest and in the highest aggregate productivity state. The solid
(blue) curves are under laissez faire. The dashed (red) curves are with stationary
hiring subsidies (left graph) and with cyclical subsidies (right graph).

These findings suggest that hiring subsidies are not particularly useful to sta-

bilize the cycle, at least when they are not accompanied by additional policies

aiming to dampen separations during recessions. More work on these issues will

obviously be needed to explore the impact of such policies in broader environ-

ments.
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4 Conclusions

This paper investigates job reallocation in a model where firms actively com-

pete for workers in a frictional labor market. Meaningful dynamics arise when

firms cannot instantly post vacancies at constant marginal costs - for example

because existing workers are required for recruitment. Firms that want to ex-

pand quickly are willing to pay higher salaries to attract more workers and hence

fill vacancies faster. Matching rates are therefore not an aggregate object, as

in most of the search literature, but are firm-specific as recently documented by

Davis et al. (2013). Calibrated versions of the model show that it can account

for this variation in vacancy yields, alongside other cross-sectional features. The

same reasons that induce firms to vary their vacancy yields also induce delayed

aggregate responses of key labor market variables to productivity shocks.

These applied contributions are derived within a model that extends com-

petitive search to a setting with large firms that face decreasing returns in pro-

duction and convex costs in recruitment. This model provides an alternative

to the current workhorse models for large firms in search markets which are

based on random search and bargaining. We establish substantial differences be-

tween these environments: Competition for workers induces firm-specific match-

ing rates, while they are identical in random-search models. Multi-worker firms

in that environment always engage in inefficient hiring, whereas we show that

our setting retains the efficiency properties known from wage competition among

single-worker firms. Finally, our model remains tractable both in and out of

steady state, which makes it useful for applied purposes. All our insights apply

equivalently to a model where workers are risk averse but have access to full

insurance markets. As discussed in the extensions, we expect our main tools

to be applicable in the absence of such insurance markets, albeit at the loss of

efficiency. Such an extension would make policy analysis more relevant.
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Appendix

Appendix A: Proofs

Proposition 1: Consider recruitment cost functions satisfying property (C). The

firm’s value function Jx(L,W ) is strictly increasing and strictly concave in its workforce

L, strictly increasing in productivity x, strictly supermodular in (x,L) and decreasing

in the worker’s search value ρ. The job-filling rate mx(L) is strictly increasing in pro-

ductivity x and strictly decreasing in the workforce L. Posted vacancies V x(m,L) are

increasing in L and strictly increasing in the desired job-filling rate m.

Proof of Proposition 1:
Rewrite problem (4) to express the dependence of the value function on x and on the
workers’ search value ρ as the solution to the dynamic programming problem

J(L, x; ρ) = max
(m,V )≥0

xF (L)− C(V,L, x)−D(m; ρ)V + β(1 − δ)J(L+, x; ρ)

s.t. L+ = L(1− s) +mV , (20)

where function D(m; ρ) is defined in the text. It is increasing, strictly convex in m

and increasing in ρ. This problem is equivalently defined on a compact state space

L ∈ [0, L] where L is so large that it never binds. This is possible because of the Inada

condition limL→∞ F ′(L) = 0. The RHS in problem (20) defines an operator T which

maps a continuous function J0(L, x; ρ), defined on S = [0, L] × [0, x] × [0, ρ] into a

continuous function J1(L, x; ρ) = T (J0)(L, x; ρ) defined on the same domain. Here x

and ρ are arbitrary upper bounds on x and ρ. Operator T is a contraction, therefore

there exists a unique fixed point J∗ which is a continuous function and which is the

limit of any sequence Jn defined by Jn = T (Jn−1).

Starting from a continuous J0 that is differentiable and weakly increasing in L and x

and weakly decreasing in ρ, successive application of T yields a sequence Jn where each

element shares these properties. Since the subset of continuous functions on S that

are weakly increasing in L and x and weakly decreasing in ρ is closed under the sup

norm, the limit J∗ of sequence Jn is in this set. Because xF (L)−C(V,L, x) is strictly

increasing in (L, x) and since D(m; ρ) is strictly increasing in ρ, the limit J∗ is strictly

increasing in x and L and strictly decreasing in ρ.

We show in subsequent Lemmata A.1 and A.2 that T maps functions that are differ-

entiable and concave in L and supermodular in L and x into functions with the same

properties. Since the subset of concave and supermodular functions is closed, the same

arguments as above imply that the unique fixed point J∗ is concave in L and super-

modular in (L, x). Since function xF (L) − C(V,L, x) is strictly concave in L, J∗ is

also strictly concave in L. Concavity in L and differentiability of xF (L) − C(V,L, x)

together with the theorem of Benveniste and Scheinkman establishes differentiability

of J∗ in L.
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Before we establish the remaining results, rewrite (20) in terms of hirings H = mV .
Dropping argument ρ from J , we can equivalently write (20) as

J(L, x) = max
H

xF (L)− C(H,L, x) + β(1− δ)J(L(1 − s) +H,x) (21)

where

C(H,L, x) ≡ min
m

C
(
H
m,L, x

)
+D(m)

H

m
. (22)

The right hand side of (21) is an equivalent expression of the fixed-point operator T.
As will become clear, the per period return xF (L) − C(H,L, x) is supermodular in
(L,H), but when C13 > 0 (which arises in first specification in (1) for h > 0) the
per period return is strictly submodular in (H,x) and in (L+, x) when one writes
H = L+− (1− s)L, which renders standard tools to prove supermodularity (e.g., Amir
(1996)) inapplicable. To proceed, the optimality condition for problem (22) is

C1

(
H
m,L, x

)
= D′(m)m−D(m) . (23)

Differentiate this equation to obtain

dm
dH

= C11

C11
H

m
+D′′2

> 0 , (24)

dm
dL

= C12m

C11
H

m
+D′′2

= C12m
C11

dm
dH

≤ 0 , (25)

dm
dx

= C13m

C11
H

m
+D′′2

= C13m
C11

dm
dH

≥ 0 . (26)

Therefore, we can express the derivatives of cost function C as

C1 = D′(m) > 0 ,

C2 = C2 ,

C11 = D′′(m)dm
dH

> 0 , (27)

C12 = D′′(m)dm
dL

≤ 0 , (28)

C22 = C22 − C12
H
m2

dm
dL

, (29)

C13 = D′′(m)dmdx ≥ 0 , (30)

C23 = C23 − C12
H
m2

dm
dx . (31)
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Lemma A.1: Suppose that J is twice differentiable and concave in L. Then T (J) is

twice differentiable and

(a) concave in L if the following condition holds:

C2
12 + C11[xF ′′ − C22] ≤ 0 . (32)

(b) concave in L and supermodular in (L, x) if J is supermodular in (L, x) and if (32)
and the following condition hold:

C12C13 + C11[F ′ − C23] ≥ 0 . (33)

Lemma A.2:

(a) Condition (32) holds under the following condition on the original cost function
C:

C2
12 + C11[xF

′′ − C22] ≤ 0 . (34)

(b) Condition (33) holds under the following condition on the original cost function
C:

C12C13 + C11[F
′ − C23] ≥ 0 . (35)

Proof of Lemma A.1:

Consider T (J) defined by the RHS of (21).
Part (a). Since J is a concave and twice differentiable function of L, T (J) is also twice
differentiable, and a policy function exists and is differentiable. Differentiate T (J) twice
with respect to L to obtain

d2(T (J))

dL2 = xF ′′ − C22 + βϕ(1 − s)J11 +
[
− C12 + βϕJ11

]
dH
dL

. (36)

Differentiate the FOC C1 = β(1− δ)J1 with respect to L to obtain

dH
dL =

βϕJ11 − C12
C11 − β(1− δ)J11

. (37)

Substitute this into (36) to obtain

d2(T (J))

dL2 = xF ′′ − C22 + βϕ(1 − s)J11C11 + C2
12 − 2βϕJ11C12

C11 − β(1 − δ)J11
.

In the last term, the denominator is positive and larger than C11. In the numerator, all
terms involving J11 are negative (due to (27) and (28)); hence the numerator is smaller
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than C2
12. Therefore,

d2(T (J))

dL2 ≤ xF ′′ − C22 + C2
12C11 ,

which is non-positive under (32). Hence, T maps a concave and twice differentiable

function into a function with the same properties.
Part (b). Since J is a concave, supermodular and twice differentiable function of (L, x),
T (J) is twice differentiable and a differentiable policy function exists. Differentiate
T (J) twice with respect to L and x to obtain

d2(T (J))
dLdx

= F ′ − C23 + βϕJ12 +
[
− C12 + βϕJ11

]
dH
dx

. (38)

Differentiate the FOC C1 = β(1− δ)J1 with respect to x to obtain

dH
dx

=
β(1− δ)J12 − C13
C11 − β(1− δ)J11

. (39)

Substitute this into (38) to obtain

d2(T (J))
dLdx

= F ′ − C23 + βϕJ12C11 + C12C13 − β(1− δ)J12C12 − βϕJ11C13
C11 − β(1− δ)J11

.

In the last term, the denominator is positive and larger than C11. In the numerator, all
terms involving J11 and J12 are non-negative (due to (27), (28) and (30)); hence the
numerator is greater than C12C13 ≤ 0. Therefore,

d2(T (J))
dLdx

≥ F ′ − C23 + C12C13C11 ,

which is non-negative under (33). Hence, T (J) is supermodular. �

Proof of Lemma A.2:
From (25), (26), (27), (28) and (30) follows that

C12 = C11C12m
C11

, (40)

C13 = C11C13m
C11

. (41)

Furthermore, substituting (28) into (25), and substituting (30) into (26) to eliminate
D′′(m) imply that

C22 = C22 − C2
12

C11
+ mC12

C11
C12 , (42)

C23 = C23 − C12
C11

[
C13 −mC13

]
. (43)
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Part (a): Rewrite (32) using (40) and (42) to obtain the equivalent condition

xF ′′ − C22 +
C2
12

C11
≤ 0 .

Because of C11 > 0, this condition is equivalent to (34).
Part (b): Rewrite (33) using (40), (41) and (43) to obtain the equivalent condition

F ′ − C23 +
C12C13
C11

≥ 0 .

Because of C11 > 0, this condition is equivalent to (35). �

Proof of Proposition 1 (continued):

It follows from Lemma A.1 and A.2 that the value function J(L, x) is concave in L

and supermodular in (L, x) because property (C) together with the assumption that

xF (.)− C(.) is concave in (L, V ) guarantee both (34) and (35).

Because of strict concavity of problem (20), policy functions mx(L) and V x(mx(L), L)

exist. To derive first-order conditions (5) and (6) is straightforward: The first condition

directly follows from (23); the second follows from the intertemporal optimality condi-

tion C1(H,L, x) = β(1 − δ)J1(L(1 − s) + H,x) and from using the envelope theorem

and (5).
The properties of V x stated in Proposition 1 were already established in the main text.
To see how mx(L) depends on L, use (25) and (37) to get

dmx(L)
dL

=
dm(H,L, x)

dL
+
dm(H,L, x)

dH
dH
dL

= dm
dH

[
C12m
C11

+
βϕJ11 − C12

C11 − β(1 − δ)J11

]
.

Because of
C12m
C11

= C12C11 ≤ C12
C11 − β(1 − δ)J11

,

the term in [.] is negative, and so is dmx/(dL).
To verify that m is increasing in x, use (26) and (39) to get

dmx(L)
dx

=
dm(H,L, x)

dx
+
dm(H,L, x)

dH
dH
dx

= dm
dH

[
C13m
C11

+
β(1− δ)J12 − C13
C11 − β(1 − δ)J11

]
.

Because of
C13m
C11

= C13C11 ≥ C13
C11 − β(1 − δ)J11

,

the term in [.] is positive, and so is dmx/(dx). �

Corollary 2: If recruitment costs are given by either specification in (1) with parameter

h sufficiently small, more productive firms have a higher growth rate, conditional on

size; and larger/older firms have a lower growth rate, conditional on productivity.
Proof of Corollary 2:
Because of exogenous separations, the growth rate of a firm, [mV − sL]/L is perfectly
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correlated with the job-creation rate,

JCR(x,L) = mx(L)
V x(mx(L), L)

L .

Differentiation of the job-creation rate with respect to x implies

dJCR
dx

= dmx

dx
V x

L + mx

L
dV x

dx
+ mx

L
dV x

dm
dmx

dx
.

In this expression, the first and the third term are strictly positive. Under the second

cost function in (1), the second term is zero. Under the first cost function in (1), the

second term is zero when h = 0, and negative but small if h is small. Thus, dJCR/(dx)

is positive if h is sufficiently small.
Differentiation of the job-creation rate with respect to L implies

dJCR
dL

= dmx

dL
V x

L + mx

L
dV x

dL
+ mx

L
dV x

dm
dmx

dL
−mV x

L2 .

In this expression, the first, the third and the fourth term are strictly negative. Under

the second cost function in (1), dV
x

dL
= V x

L , and the second and forth terms cancel out.

Under the first cost function in (1), the second term is zero when h = 0, and positive

but small if h is small. Thus, dJCR/(dL) is negative if h is sufficiently small. �

Lemma A.3: In the stationary model with recruitment cost C(V,L, x) = xF (L) −
xF (L − hV ) + cV , job-filling rates in the optimal firm’s problem follow the dynamic
equation

ρ
[
mt+1λ

′(mt+1)− λ(mt+1)
]
− (b+ ρ)h− c =

ρh
β(1− δ)

[
λ′(mt)− βϕλ′(mt+1)

]
. (44)

It has a unique steady state solution m∗ > 0 if, and only if,

h <
β(1− δ)m
1− βϕ

, (45)

with m ≡ limm→1m− λ(m)
λ′(m)

> 0. Under this condition, any sequence mt > 0 satisfying

this dynamic equation converges to m∗.

Proof of Lemma A.3:
It is straightforward to derive (44) by substitution of (5) into (6). A steady state m∗

must satisfy the condition

ρ
[
m− λ(m)

λ′(m)

]
=
ρh(1 − βϕ)
β(1− δ)

+
(b+ ρ)h+ c

λ′(m)
. (46)

The LHS is strictly increasing and goes from 0 to ρm as m goes from 0 to 1. The RHS
is decreasing in m with limit ρh(1− βϕ)/[β(1− δ)] for m→ 1. Hence, a unique steady
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state m∗ exists iff (45) holds.40 Furthermore, differentiation of (44) at m∗ implies that

dmt+1
dmt

∣∣∣
m∗

= h
β(1− δ)m∗ + hβϕ

,

which is positive and smaller than one iff

h <
β(1− δ)m∗
1− βϕ

.

But this inequality must be true because (46) implies

h =
ρ[m∗λ′(m∗)− λ(m∗)]− c

ρ[1−βϕ]
β(1−δ)

λ′(m∗)+b+ρ
<
β(1 − δ)m∗
1− βϕ

.

Therefore, the steady statem∗ is locally stable. Moreover, the dynamic equation defines

a continuous, increasing relation between mt+1 and mt which has only one intersection

with the 45-degree line. Hence, mt+1 > mt for any mt < m∗ and mt+1 < mt for any

mt > m∗, which implies that mt converges to m
∗ from any initial value m0 > 0. �

Proposition 2: A stationary competitive search equilibrium exists and is unique.

There is strictly positive firm entry provided that K is sufficiently small.

Proof of Proposition 2:
It remains to prove existence and uniqueness. From Proposition 1 follows that the
entrant’s value function Jx(0, 0) is decreasing and continuous in ρ. Hence the expected
profit prior to entry,

Π∗(ρ) ≡
∑
x∈X

π(x)Jx(0, 0)

is a decreasing and continuous function of ρ. Moreover, the function is strictly de-

creasing in ρ whenever it is positive. This also follows from the proof of Proposition

1 which shows that J(0, x; ρ) is strictly decreasing in ρ when the new firm x recruits

workers (V x(mx(0), 0) > 0). If no new firm recruits workers, expected profit of an

entrant cannot be positive. Hence, equation (7) can have at most one solution for any

K > 0. This implies uniqueness, with entry of firms if (7) can be fulfilled or without

entry of firms otherwise. A solution to (7) exists provided that K is sufficiently small.

To see this, Π∗(0) is strictly positive because of F ′(0) = ∞: some entrants will recruit

workers since the marginal product J1(mV, x; ρ) is sufficiently large relative to the cost

of recruitment and relative to the wage cost which are, for ρ = 0, equal to mV b (see

equation (20)). But when Π∗(0) > 0, a sufficiently small value of K guarantees that

(7) has a solution since limρ→∞Π∗(ρ) = 0. �

Proposition 3: The stationary competitive search equilibrium is socially optimal.
Proof of Proposition 3:
The social planner decides at each point in time about firm entry, vacancy postings

40If this condition fails, firms cannot profitably recruit workers.
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and job-filling rates for all firms. The planner takes as given the numbers of firms
that entered in some earlier period, as well as the employment stocks of all these
firms. Formally, the planner’s state vector is σ = (Na, L

x
a)a≥1,x∈X where Na is the

mass of firms of age a ≥ 1, and Lx
a is employment of a firm with productivity x and

age a. The planner maximizes the present value of output net of opportunity costs of
employment and net of the costs of entry and recruitment, subject to the economy’s
resource constraint. With σ+ = (Na,+, L

x
a,+)a≥1,x∈X denoting the state vector in the

next period, the recursive formulation of the social planning problem is

S(σ) = max
N0,(V x

a ,mx
a)a≥0

{∑
a≥0

Na

∑
x∈X

π(x)
[
xF (Lx

a)− bLx
a − C(V x

a , L
x
a, x)

]}

−KN0 + βS(σ+) (47)

s.t. Lx
0 = 0, Lx

a+1,+ = (1− s)Lx
a +mx

aV
x
a , a ≥ 0, x ∈ X ,

Na+1,+ = (1− δ)Na , a ≥ 0 ,∑
a≥0

Na

∑
x∈X

π(x)
(
Lx
a + λ(mx

a)V
x
a

)
≤ 1 .

We now show that the first-order conditions that uniquely characterize the decentralized
allocation are also first order conditions to the planner’s problem. The same argument
that we use in the proof of Lemma A.4 part (b) (see the proof of Proposition 4) then
establishes that the planner cannot improve upon this allocation. We denote by SN,a

the derivative of S with respect to Na and by SL,a,x the derivative of S with respect
to Lx

a. The multiplier on the resource constraint is μ ≥ 0. First-order conditions with
respect to N0, V

x
a , and m

x
a, a ≥ 0, are∑

x∈X
π(x)

[
xF (0)− C(V x

0 , 0, x)
]
−K + β(1− δ)SN,1 − μ

∑
x∈X

π(x)λ(mx
0)V

x
0 = 0 , (48)

−Naπ(x)
[
C1(V

x
a , L

x
a, x) + μλ(mx

a)
]
+ βSL,a+1,xm

x
a ≤ 0 , V x

a ≥ 0 , (49)

βSL,a+1,x − μNaπ(x)λ
′(mx

a) = 0 . (50)

Here condition (49) holds with complementary slackness. The envelope conditions are,
for a ≥ 1 and x ∈ X,

SL,a,x = Naπ(x)
[
xF ′(Lx

a)−C ′
2(V

x
a , L

x
a, x)− b− μ

]
+ β(1− s)SL,a+1,x , (51)

SN,a =
∑
x∈X

π(x)
[
xF (Lx

a)−C(V x
a , L

x
a, x)−bLx

a

]
−μ

∑
x∈X

π(x)
(
Lx
a+λ(m

x
a)V

x
a

)
+β(1−δ)SN,a+1 .

(52)
Use (50) to substitute SL,a,x into (51) to obtain

xF ′(Lx
a+1)− C2(V

x
a+1, L

x
a+1, x)− b− μ =

μ
β(1− δ)

[λ′(mx
a)− βϕλ′(mx

a+1)] .
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This equation is the planner’s intertemporal optimality condition; it coincides with
equation (6) for μ = ρ. This is intuitive: when the social value of an unemployed
worker μ coincides with the surplus value that an unemployed worker obtains in search
equilibrium, the firm’s recruitment policy is efficient. Next substitute (50) into (49) to
obtain, for a ≥ 0 and x ∈ X,

C1(V
x
a , L

x
a, x) ≥ μ[mx

aλ
′(mx

a)− λ(mx
a)] , V

x
a ≥ 0 . (53)

Again for μ = ρ, this condition coincides with the firm’s intratemporal optimality
condition in competitive search equilibrium, equation (5). Lastly, it remains to verify
that entry is socially efficient when the value of a jobless worker is μ = ρ. The plan-
ner’s choice of firm entry, condition (48), together with the recursive equation for the
marginal firm surplus SN,a, equation (52), shows that

K =
∑
a≥0

[β(1− δ)]a
∑
x∈X

π(x)
[
xF (Lx

a)− bLx
a−C(V x

a , L
x
a, x)−μ(Lx

a+λ(m
x
a)V

x
a )

]
. (54)

On the other hand, the expected profit value of a new firm is∑
x∈X

π(x)Jx(0, 0) =
∑
a≥0

[β(1 − δ)]a
∑
x∈X

π(x)
[
xF (Lx

a)−W x
a − C(V x

a , L
x
a, x)

]
.

Hence, the free-entry condition in search equilibrium, equation (7), coincides with con-
dition (54) for μ = ρ if, for all x ∈ X,∑

a≥0

[β(1 − δ)]a
[
(b+ μ)Lx

a + μλ(mx
a)V

x
a −W x

a

]
= 0 . (55)

Now after substitution of

Lx
a =

a−1∑
k=0

(1− s)a−1−kmx
kV

x
k , and

W x
a =

a−1∑
k=0

(1− s)a−1−kV x
k

[
ρλ(mx

k)(1− βϕ)
β(1 − δ)

+mx
k(b+ ρ)

]

into (55), it is straightforward to see that the equation is satisfied for μ = ρ. �

Proposition 4:

(a) Suppose that a solution of (14) and (15) exists with associated allocation A =

(N,L,V,m, s, δ) satisfying N(zt) > 0 for all zt. Then A is a solution of the

sequential planning problem (12).

(b) If K(z), f , and b are sufficiently small and if z1 = . . . = zn = z, equations

(14) and (15) have a unique solution (G,M). Moreover, if the transition matrix
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ψ(zj |zi) is strictly diagonally dominant and if |zi − z| is sufficiently small for all

i, equations (14) and (15) have a unique solution.

Proof of Proposition 4:

Part (a):
Let βtψ(zt)μ(zt) ≥ 0 be the multiplier on the resource constraint (13) in history node
zt. That is, μ(zt) is the social value of a worker in history zt. Write μ = (μ(zt)) for the
vector of multipliers. Let Gt(L, x, z

t) denote the social value of an existing firm with
employment stock L, idiosyncratic productivity x and aggregate productivity history
zt. The sequence Gt obeys the recursive equations

Gt(L, x, z
t) = max

δ,s,V,m
xztF (L)− bL− μ(zt)[L+ λ(m)V ]− C(V,L, xzt)− f (56)

+β(1− δ)Ex,ztGt+1(L+, x+, z
t+1)

s.t. L+ = (1− s)L+mV ,

δ ∈ [δ0, 1], s ∈ [s0, 1], m ∈ [0, 1], V ≥ 0 .

We first prove the equivalence between problem (56) and the planner’s problem (12)

(Lemma A.4). Then we show that the reduced problem (14) solves (56) if entry is

positive in all states.

Lemma A.4:

(a) For given multipliers μ(zt), there exist value functions Gt : IR+×X ×Zt+1 → IR,

t ≥ 0, satisfying the system of recursive equations (56).

(b) If X = (N,L,V,m, s, δ) is a solution of the planning problem (12) with multipliers
μ = (μ(zt)), then the corresponding firm policies also solve problem (56) and the
complementary-slackness condition∑

x∈X
π0(x)Gt(0, x, z

t) ≤ K(zt) , N0(z
t) ≥ 0 , (57)

is satisfied for all zt. Conversely, if X solves for every firm problem (56) with

multipliers μ, and if condition (57) and the resource constraint (13) hold for all

zt, then X is a solution of the planning problem (12).

Proof of Lemma A.4:

Part (a): The RHS in the system of equations in (56) defines an operator T which maps

a sequence of bounded functions G = (Gt)t≥0, with Gt : [0, L] × X × Zt → IR such

that ‖G‖ ≡ supt ‖Gt‖ < ∞, into another sequence of bounded functions G̃ = (G̃t)t≥0

with ‖G̃‖ = supt ‖G̃t‖ < ∞. Here L is sufficiently large such that the bound L+ ≤ L

does not bind for any L ∈ [0, L]. The existence of L follows from the Inada condition
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for F : the marginal product of an additional worker xzF ′(L+) − b must be negative

for any x ∈ X, z ∈ Z, for all L+ ≥ L with sufficiently large L; hence no hiring will

occur beyond L. Because the operator satisfies Blackwell’s sufficient conditions, it is a

contraction in the space of bounded function sequences G. Hence, the operator T has

a unique fixed point which is a sequence of bounded functions.
Part (b): Take first a solution X of the planning problem, and write βtψ(zt)μ(zt) ≥ 0
for the multipliers on constraints (13). Then X maximizes the Lagrange function

L = max
∑

t≥0,zt

βtψ(zt)

{
−K(zt)N0(z

t) +
∑

a≥0,xa

N(xa, zt)

[
xaztF (L(x

a, zt))− bL(xa, zt)

−f − C(V (xa, zt), L(xa, zt), xazt)− μ(zt)
[
L(xa, zt) + λ(m(xa, zt))V (xa, zt)

]]}

For each individual firm, this problem is the sequential formulation of the recursive
problem (56) with multipliers μ(zt). Hence, firm policies also solve the recursive prob-
lem; furthermore, the maximum of the Lagrange function is the same as the sum of
the social values of entrant firms plus the social values of firms which already exist at
t = 0, namely,

L = max
N0(.)

∑
t,zt

βtψ(zt)N0(z
t)
[
−K(zt) +

∑
x

π0(x)Gt(0, x, z
t)
]

+
∑
z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) .

This also proves that the complementary-slackness condition (57) describes optimal

entry.
To prove the converse, suppose that X solves for every firm the recursive problem
(56) with given multipliers μ(zt), and that (57) and the resource constraints (13) are
satisfied. We prove that X also solves the original planning problem (12) subject to
(13) by contradiction: Suppose that there is an allocation X′ is feasible for problem
(12) under constraint (13) and strictly dominates X. Write

O(xa, zt) ≡ xaztF (L(x
a, zt))− bL(xa, zt)− f − C(V (xa, zt), L(xa, zt), xazt)

for the net output created by firm (xa, zt) in allocation X and write O′(xa, zt) for the
same object in allocation X′. Further, write S for the total surplus value in allocation
X and write S′ > S for the surplus value in allocation X′. Then

S′ =
∑

t≥0,zt

βtψ(zt)

{
−K(zt)N

′
0(z

t) +
∑

a≥0,xa

N ′(xa, zt)O′(xa, zt)

}

=
∑

t≥0,zt

βtψ(zt)

{
−K(zt)N

′
0(z

t) + μ(zt)− μ(zt) +
∑

a≥0,xa

N ′(xa, zt)O′(xa, zt)

}
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≤
∑

t≥0,zt

βtψ(zt)

{
−K(zt)N

′
0(z

t) + μ(zt)

+
∑

a≥0,xa

N ′(xa, zt)
[
O′(xa, zt)− μ(zt)

(
L′(xa, zt) + λ(m′(xa, zt))V ′(xa, zt)

)]}

≤
∑

t≥0,zt

βtψ(zt)N ′
0(z

t)
[
−K(zt) +

∑
x

π0(x)Gt(0, x, z
t)
]

+
∑
z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) +
∑
t,zt

βtψ(zt)μ(zt)

≤
∑

t≥0,zt

βtψ(zt)N0(z
t)
[
−K(zt) +

∑
x

π0(x)Gt(0, x, z
t)
]

+
∑
z∈Z

ψ(z0)
∑

a≥1,xa

N(xa, z0)G0(L(x
a, z0), xa, z

0) +
∑
t,zt

βtψ(zt)μ(zt) = S .

Here the first equality just adds and subtracts μ(zt). The subsquent inequality follows
from resource constraint (13). The second inequality follows since the discounted sum
of surplus values for an individual firm which is of age a at time t, namely

∑
τ≥t

βτ−t
∑

xa+τ−tzτ

ψ(zτ |zt)π(xa+τ−t|xa)
τ−1∏
k=t

[1− δ(xa+k−t, zk)]

[
O′(xa+τ−t, zτ )− μ(zτ )[L′(xa+τ−t, zτ ) + λ(m′(xa+τ−t, zτ ))V ′(xa+τ−t, zτ )]

]
,

is bounded above Gt(0, x0, zt) (for new firms, a = 0) or by G0(L(x
a, z0), xa, z

0) (for

firms of age a > 0 existing at t = 0) by definition of Gt. The third inequality

follows from the complementary-slackness condition (57): either the term −K(zt) +∑
x π0(x)Gt(0, x, z

t) is zero in which case the first summand is zero on both sides of

the inequality; or it is strictly negative in which case N0(z
t) = 0 and N ′

0(z
t) ≥ 0. The

last equality follows from the definition of surplus value S and the assumption that al-

location X solves problem (56) at the level of each individual firm. This proves S′ ≤ S

and hence contradicts the hypothesis S′ > S. This completes the proof of Lemma A.4.

�

Proof of Proposition 4 (continued):

To complete the proof of Prop. 3, part (a), let μi be the multiplier in aggregate state zi,

defined by (14) and (15), and write M = (μ1, . . . , μn). With μ(zt) ≡ μi for zt = zi, the

unique solution of (56) coincides with the one of (14), i.e. Gt(L, x, z
t) = G(L, x, i;M)

for zt = zi, and also the firm-level policies coincide. If they give rise to an allocation

X with positive entry in all aggregate states zt, (15) implies that (57) holds for all zt.

Hence Lemma A.4(b) implies that X is a solution of the planning problem.

Part (b): Solving (14) in the stationary case z = z involves to find a single value
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function G(L, x;M). Application of the contraction mapping theorem implies that

such a solution exists, is unique, and is continuous and non-increasing in μ ∈ IR and

strictly decreasing in μ when G(.) > 0.

Therefore, the function Γ(μ) ≡ ∑
x π0(x)G(0, x;μ) ≥ 0 is continuous, strictly decreas-

ing when positive, and zero for large enough μ. Furthermore, when f and b are suffi-

ciently small, Γ(0) > 0; hence when K > 0 is sufficiently small, there exists a unique

μ ≥ 0 satisfying equation (15).

In the stochastic case z ∈ {z1, . . . , zn} and for any given vectorM = (μ1, . . . , μn) ∈ Rn
+,

the system of recursive equations (14) has a unique solution G(.;M). Again this follows

from the application of the contraction-mapping theorem. Furthermore, G is differen-

tiable inM , and all elements of the Jacobian (dG(L, x, i;M)/(dμj ))i,j are non-positive.

The RHS of (14) defines an operator mapping a function G(L, x, i;M) with a strictly

diagonally dominant Jacobian matrix (dG(L, x, i;M)/(dμj ))i,j into another function

G̃ whose Jacobian matrix (dG̃(L, x, i;M)/(dμj ))i,j is diagonally dominant. This fol-

lows since the transition matrix ψ(zj |zi) is strictly diagonally dominant and since all

elements of (dG̃(L, x, i;M)/(dμj )) have the same (non-positive) sign. Therefore, the

unique fixed point has a strictly diagonally dominant Jacobian. Now suppose that

(z1, . . . , zn) is close to (z, . . . , z) and consider the solution μ1 = . . . = μn = μ of the

stationary problem. Since the Jacobian matrix (dG(0, x, i;M)/(dμj ))i,j is strictly di-

agonally dominant, it is invertible. By the implicit function theorem, a unique solution

M to equation (15) exits. �

For the proof of Proposition 5, see Appendix B.
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Appendix B: Decentralization

The Workers’ Search Problem
Let U(zt) be the utility value of an unemployed worker in history zt, and let E(Ca, xk, zt)
be the utility value of a worker hired by a firm of age a in contract Ca who is currently
employed at that firm in history xk, with k > a. The latter satisfies the recursive
equation

E(Ca, xk, zt) = wa(x
k, zt) + β

{
(1− ϕa(x

k, zt))EztU(zt+1) (58)

+ϕa(x
k, zt)Exk,ztE(Ca, xk+1, zt+1)

}
.

An unemployed worker searches for contracts which promise the highest expected util-
ity, considering that more attractive contracts are less likely to sign. The worker ob-
serves all contracts Ca and he knows that the probability to sign a contract is m/λ(m)
when m is the firm’s matching probability at the offered contract. That is, potential
contracts are parameterized by the tuple (m, Ca). Unemployed workers apply for those
contracts where expected surplus is maximized:

ρ(zt) = max
(m,Ca)

m
λ(m)

(1− δ(xa, zt))βExa,zt

[
E(Ca, xa+1, zt+1)− U(zt+1)

]
. (59)

The Bellman equation for an unemployed worker reads as

U(zt) = b+ ρ(zt) + βEztU(zt+1) . (60)

The Firms’ Problem
A firm of age a in history (xa, zt) takes as given the employment stocks of workers hired
in some earlier period, (Lτ )

a−1
τ=0, as well as the contracts signed with these workers,

(Cτ )a−1
τ=0. For the contracts to be consistent with the firm’s constraints on exit and

separations, the retention probabilities must satisfy ϕτ (x
a, zt) ≤ (1− s0)(1 − δ0). The

firm chooses an actual exit probability δ ≥ δ0 and cohort-specific layoff probabilities
sτ . For these probabilities to be consistent with separation probabilities specified in
existing contracts, it must hold that δ ≤ 1 − ϕτ (x

a, zt) for all τ ≤ a − 1, and sτ =
1 − ϕτ (x

a, zt)/(1 − δ) when δ < 1, with arbitrary choice of sτ when δ = 1. The
firm also decides new contracts Ca to be posted in V vacancies with desired matching
probability m. It is no restriction to presuppose that the firm offers only one type of
contract. When Ja is the value function of a firm of age a, the firm’s problem is written
as

Ja

[
(Cτ )a−1

τ=0, (Lτ )
a−1
τ=0, x

a, zt
]

= max
(δ,m,V,Ca)

xaztF (L)−W − C(V,L, xazt) (61)

−f + β(1− δ)Exa,ztJa+1

[
(Cτ )aτ=0, (Lτ+)

a
τ=0, x

a+1, zt+1
]
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s.t. La+ = mV, m ∈ [0, 1], V ≥ 0, Lτ+ = Lτ
ϕτ (x

a, zt)
1− δ

, τ ≤ a− 1 , (62)

δ ∈ [δ0, min
0≤τ≤a−1

1− ϕτ (x
a, zt)], s0 ≤ 1− ϕτ (x

a, zt)/(1 − δ) , (63)

W =
a−1∑
τ=0

wτ (x
a, zt)Lτ , L =

a−1∑
τ=0

Lτ , (64)

ρ(zt) = m
λ(m)

(1− δ)βExa,zt

[
E(Ca, xa+1, zt+1)− U(zt+1)

]
if m > 0 . (65)

The last condition is the workers’ participation constraint; it specifies the minimum

expected utility that contract Ca must promise in order to attract a worker queue of

length λ(m) per vacancy.

Definition: A competitive search equilibrium is a list[
U(zt), E(.), ρ(zt), Ca(xa, zt),m(xa, zt), V (xa, zt), δ(xa, zt), Ja(.), Lτ (x

a, zt), N(xa, zt), N0(z
t)

]
,

for all t ≥ 0, a ≥ 0, xa ∈ Xa+1, zt ∈ Zt+1, 0 ≤ τ ≤ a, and for a given initial firm

distribution, such that

(a) Firms’ exit, hiring and layoff strategies are optimal. That is, Ja is the value

function and Ca(.), δ(.), m(.), and V (.) are the policy functions for problem

(61)-(65).

(b) Employment evolves according to

Lτ (x
a, zt) = Lτ (x

a−1, zt−1)
ϕτ (x

a, zt)
1− δ(xa, zt)

, 0 ≤ τ ≤ a− 1 ,

La(x
a, zt) = m(xa, zt)V (xa, zt) , a ≥ 0 .

(c) Firm entry is optimal. That is, the complementary slackness condition∑
x

π0(x)J0(x, z
t) ≤ K(zt) , N0(z

t) ≥ 0 , (66)

holds for all zt, and the number of firms evolves according to (9) and (11).

(d) Workers’ search strategies are optimal, i.e. (ρ, U,E) satisfy equations (58), (59)

and (60).

(e) Aggregate resource feasibility; for all zt,

∑
a≥0,xa

N(xa, zt)
[
λ(m(xa, zt))V (xa, zt) +

a−1∑
τ=0

Lτ (x
a, zt)

]
= 1 . (67)
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Proposition 5: A competitive search equilibrium is socially optimal.
Proof of Proposition 5:

The proof proceeds in two steps. First, substitute the participation constraint (65)

into the firm’s problem and make use of the contracts’ recursive equations (58) to show

that the firms’ recursive profit maximization problem is identical to the maximization

of the social surplus of a firm. Second, show that a competitive search equilibrium is

socially optimal.
First, define the social surplus of a firm with history (xa, zt) and with predetermined
contracts and employment levels as follows:

Ga

[
(Cτ )a−1

τ=0, (Lτ )
a−1
τ=0, x

a, zt
]
≡ Ja

[
(Cτ )a−1

τ=0, (Lτ )
a−1
τ=0, x

a, zt
]
+

a−1∑
τ=0

Lτ

[
E(Cτ , xa, zt)−U(zt)

]
.

(68)
Using (58) and (60), the worker surplus satisfies

E(Cτ , xa, zt)−U(zt) = wτ (x
a, zt)−b−ρ(zt)+βϕτ (x

a, zt)Exa,zt

[
E(Cτ , xa+1, zt+1)−U(zt+1)

]
.

Now substitute this equation and (61) into (68), and write

σ ≡
[
(Cτ )a−1

τ=0, (Lτ )
a−1
τ=0, x

a, zt
]
and σ+ ≡

[
(Cτ )aτ=0, (Lτ+)

a
τ=0, x

a+1, zt+1
]
,

with Lτ+ as defined in (62) and L =
∑a−1

τ=0 Lτ , to obtain

Ga(σ) = max
δ,m,V,Ca

{
xaztF (L)− C(V,L, xazt)− f −

a−1∑
τ=0

Lτwτ (x
a, zt) (69)

+β(1− δ)Exa,ztJa+1(σ+)

}
+

a−1∑
τ=0

Lτ

[
wτ (x

a, zt)− b− ρ(zt)

+βϕτ (x
a, zt)Exa,zt

[
E(Cτ , xa+1, zt+1)− U(zt+1)

]]

= max
δ,m,V,Ca

{
xaztF (L)− [b+ ρ(zt)]L− f − C(V,L, xazt) + β(1− δ)Exa,ztJa+1(σ+)

+β

a−1∑
τ=0

Lτϕτ (x
a, zt)Exa,zt

[
E(Cτ , xa+1, zt+1)− U(zt+1)

]}

= max
δ,m,V,Ca

{
xaztF (L)− bL− ρ(zt)[L+ λ(m)V ]− f − C(V,L, xazt)

+β(1− δ)Exa,ztJa+1(σ+)
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+β(1− δ)

a∑
τ=0

Lτ+Exa,zt

[
E(Cτ , xa+1, zt+1)− U(zt+1)

]}

= max
δ,m,V,Ca

{
xaztF (L)− bL− ρ(zt)[L+ λ(m)V ]− f

−C(V,L, xazt) + β(1− δ)Exa,ztGa+1(σ+)

}
.

Here maximization is always subject to (62) and (63), the third equation makes use of

(1− δ)Lτ+ = ϕτ (x
a, zt)Lτ ,

for τ ≤ a− 1, and

ρ(zt)λ(m)V = β(1− δ)La+Exa,zt

[
E(Ca, xa+1, zt+1)− U(zt+1)

]
,

and the last equation makes use of (68) for Ga+1. This shows that the firm solves a sur-

plus maximization problem which is identical to the one of the planner specified in (56)

provided that ρ(zt) = μ(zt) holds for all zt, where μ is the social value of an unemployed

worker as defined in the proof of Proposition 4. The only difference between the two

problems is that the firm commits to cohort-specific separation probabilities, whereas

the planner chooses in every period an identical separation probability for all workers

(and he clearly has no reason to do otherwise). Nonetheless, both problems have the

same solution: they are dynamic optimization problems of a single decision maker in

which payoff functions are the same and the decision sets are the same. Further, time

inconsistency is not an issue since there is no strategic interaction and since discounting

is exponential. Hence solutions to the two problems, with respect to firm exit, layoffs

and hiring strategies, are identical. In both problems the decision maker could discrim-

inate between different cohorts in principal. Because such differential treatment does

not raise social firm value, there is also no reason for competitive search to produce

such an outcome. Nonetheless, there can be equilibrium allocations where different co-

horts have different separation probabilities, but these equilibria must also be socially

optimal because they maximize social firm value.

It remains to verify that competitive search gives indeed rise to socially efficient firm

entry. When μ(zt) = ρ(zt), G0(x, z
t) = J0(x, z

t) as defined in (68) coincides with

G0(0, x, z
t), as defined in (56). Hence, the free-entry condition (66) coincides with the

condition for socially optimal firm entry (57). Because of aggregate resource feasibility

(67), the planner’s resource constraint (13) is also satisfied. Since the allocation of

a competitive search equilibrium satisfies all the requirements of Lemma A.4(b), it is

socially optimal. �
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Appendix C: Calibration and Computation

Calibration

We choose the period length to be one week and set β = 0.999 so that the annual interest

rate is about 5 percent. We assume a CES matching function m(λ) = (1 + kλ−r)−1/r

(i.e. the inverse of the function λ(m) used in the main text) and set the two parameters

k and r to target a weekly job-finding rate of 0.129 and an elasticity of the job-finding

rate with respect to the vacancy-unemployment ratio of 0.28 (Shimer (2005)).41 By

choosing parameter c of the recruitment technology (see below), we also target the

(average) weekly job-filling rate at 0.3, which corresponds to a monthly vacancy yield

of 1.3 (Davis et al. (2013)). Since in steady state the unemployment-vacancy ratio

equals the ratio between the job-filling rate and the job-finding rate, we calculate the

parameters k and r to attain the two targets at λ = 0.3/0.129 = 2.326.

The production technology is Cobb-Douglas with xLα where the firm’s idiosyncratic

productivity x = x0x1 contains a time-invariant component x0 and a transitory compo-

nent x1 (cf. Elsby and Michaels (2013)). The time-invariant component is drawn upon

firm entry from one of five values xi0, i = 1, . . . , 5, with entry shares σi where (xi0, σ
i)

are chosen to match the firm and employment shares within the five size classes 1-49,

50-249, 250-999, 1000-9999, and ≥ 10000, where data targets are taken from the Busi-

ness Dynamics Statistics (BDS) of the U.S. Census Bureau. The transitory component

x1 is drawn from one of five equidistant values in the range [1−x, 1+x] and is redrawn

every period with probability π. Parameters π and x are chosen to match a monthly

separation rate of 4.2 percent and the observation that about two thirds of employment

is at firms with monthly employment growth rates in the range [−0.02, 0.02] (see Davis

et al. (2010)). Firm exit is exogenous; that is, we set the operating cost to f = 0 and

choose exit probabilities specific for the five size classes δi, i = 1, . . . , 5, to match annual

firm exit rates from the BDS. Parameter α is set to 0.7 which gives rise to a labor share

of roughly 2/3. Given that all capital is fixed at the level of a firm, this consideration

does not take into account variable capital investment at the firm level which would

suggest a higher value of α; see Appendix D for a robustness analysis regarding this

parameter.

In the benchmark parameterization, we set unemployment income b at 0.7 of the aver-

age wage which is similar to the calibrated values of non-market work chosen by Hall

and Milgrom (2008) and Pissarides (2009).42 As mentioned in the main text, we also

consider a much higher value of this parameter, namely 97.7 percent of the average

wage which corresponds to the choice of Hagedorn and Manovskii (2008) and gives rise

41Note that there is no third parameter in the CES matching function since we require that
limλ→∞m(λ) = 1.

42Hall and Milgrom (2008) calibrate the flow value of unemployment at 0.71 of productivity
(0.73 of wages). Their value includes a reasonably low value of unemployment benefits (0.25)
and reflects some risk sharing within households.
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to much more amplification of aggregate shocks.43 For this parameterization, we recal-

ibrate all other parameters to hit the same targets as in the benchmark calibration.44

The exogenous quit rate is set at s0 = 0.0048 to match a monthly quit rate of 2 percent.

The entry cost parameter K can be normalized arbitrarily since all firm value functions

(and thus the free-entry condition) are linearly homogeneous in the vector (x, b, c,K).

As mentioned in the main text, the recruitment technology has the form c(V ) =
c

1+γ (
V
L )

γV , where we take a cubic function (γ = 2) for the benchmark calibration.

When we compare the benchmark results with those for γ = 0.1 and for γ = 8,

we recalibrate parameters c and b (equivalently, parameter K) to target the average

unemployment-vacancy ratio λ = 2.326 which gives rise to an average weekly job-filling

rate of 0.3 and the same b/w ratio as in the benchmark.45 We note that recruitment

costs per hire are reasonably low for all three parameterizations (below 1% of quarterly

earnings).

In our business cycle analysis, we choose the aggregate state process z as described

in the text and let the entry cost K vary with the aggregate state which stabilizes

the volatility of job creation at opening firms. Specifically, K attains the values

(324.6, 327.2, 329.8, 332.4, 335.0) in the five productivity states in the calibration with

b/w ≈ 0.7. For b/w ≈ 0.977, K attains the values (214.1, 218.5, 222.6, 226.6, 230.5).

To complement the cross-sectional results in the main text, Table 6 reports quarterly

job creation and job destruction rates in four different size classes taken from the

Business Employment Dynamics dataset of the Bureau of Labor Statistics.46 The

model generates job creation and job destruction rates which are falling in firm size,

which is qualitatively in line with the data. The relationship is less pronounced than in

the data because we do not calibrate the transitory productivity processes separately

for each size class. Negative relationships between size and job flows are also observed

for entering and exiting firms.

Computation

To solve the model numerically, we implement the procedure as outlined in Section

2.3.1. Given the discrete sets of idiosyncratic states x ∈ X and aggregate states z ∈ Z

and the corresponding Markov transition matrices, as well as a grid for employment L,

we solve recursive problems (14) for a given initial guess of multipliers μ(z), z ∈ Z, by

value-function iteration. To make sure that the free-entry conditions (15) are satisfied,

we adjust multipliers accordingly. This yields firm value functions G(L, x, z), as well

43This alternative value of b corresponds to 96.8 percent of the average (employment-
weighted) marginal product and 68 percent of labor productivity.

44Deviating from Table 1, we set c = 0.496, K = 236.3 (which follows from b = 0.1
and the choice of b/w ≈ 0.977), x = 0.104, (xi0) = (.273, .585, .913, 1.503, 3.060), (σi) =
(99.07, 0.80, .10, .025, .001), π = 0.06.

45Deviating from Table 1, we set c = 0.04092, K = 358.69 for γ = 0.1 and c = 1.274 · 109,
K = 287.46 for γ = 8 (fixing b = 0.1 throughout).

46The largest size class in this dataset are firms with 1000 or more workers. Hence, we merge
the two largest size classes for the reported model statistics.
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Table 6: Firm size and quarterly job flows

Size class 1–49 50–249 250–999 ≥ 1000

Data

Job creation 10.6 6.0 4.6 2.9
Job destruction 10.4 5.7 4.3 2.7
Job creation (openings) 3.0 0.3 0.1 0.01
Job destruction (closings) 2.9 0.4 0.2 0.02

Model

Job creation 9.6 7.5 7.3 6.3
Job destruction 9.4 7.3 7.2 6.4
Job creation (openings) 0.6 0.02 0.0 0.0
Job destruction (closings) 2.1 0.3 0.2 0.0

Notes: Data statistics are from the Business Employment Dynamics (1992-2011) of the Bureau

of Labor Statistics. Model statistics are from a cross section of 4.9 ·106 firms for the benchmark

calibration (γ = 2).

as policy functions λ(L, x, z), V (L, x, z), s(L, x, z).47 Given the calibrated (exogenous)

exit rates δ(x), this allows us to compute retention rates ϕ(L, x, z) = (1 − δ(x))(1 −
s(L, x, z)).
For the particular decentralization with flat-wage contracts mentioned in the text,
we use the following procedure for the calculation. A flat-wage contract offered to a
new hire specifies the wage w together with retention probabilities ϕ(L, x, z) that are
identical for all workers in firm (L, x, z). In a recursive equilibrium, this allows us to
rewrite the identities for worker value functions E(w,L, x, z), unemployment values
U(z), and the search surplus ρ(z) = μ(z), given by (58), (59) and (60) as follows:

E(w,L, x, z) = w + β
{
(1− ϕ(L, x, z))EzU(z+) (70)

+ϕ(L, x, z)Ex,zE(w,L+, x+, z+)
}
,

μ(z) =
m(λ(L, x, z))

λ(L, x, z)
(1− δ(z))βEx,z

[
E(w,L+, x+, z+)− U(z+)

]
, (71)

U(z) = b+ μ(z) + βEzU(z+) . (72)

Here L+ = L(1 − s(L, x, z)) + m(λ(L, x, z))V (L, x, z) is next period’s employment
which follows from the firms’ policy functions. Equation (71) defines the flat wage

47Deviating from the main text, we write firm policies in terms of worker-job ratios λ, so
that matching rates m(λ) follow from the matching function.
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w = w∗(L, x, z) that firm (L, x, z) offers to new hires. Subtracting (72) from (70) gives

E(w,L, x, z) − U(z) = w − b− μ(z) + βϕ(L, x, z)Ex,z

[
E(w,L+, x+, z+)− U(z+)

]
.

It follows that

E(w,L, x, z) − U(z) = A(L, x, z)(w − b)−B(L, x, z) , (73)

where A(L, x, z) and B(L, x, z) are defined recursively by

A(L, x, z) = 1 + βϕ(L, x, z)Ex,zA(L+, x+, z+) , (74)

B(L, x, z) = μ(z) + βϕ(L, x, z)Ex,zB(L+, x+, z+) . (75)

From (71) and (73), we can compute the wage w = w∗(L, x, z) that firm (L, x, z) offers
to new hires:

w∗(L, x, z) = b+
{

μ(z)λ(L, x, z)
m(λ(L, x, z))(1 − δ(x))β

+ Ex,zB(L+, x+, z+)
}

1
Ex,zA(L+, x+, z+)

.

For the model computation, we solve (74) and (75) simultaneously with G(L, x, z) in
the value-function iteration. This allows us to compute the flat wages w∗(L, x, z) offered
to new hires.

After we solve the model for the firms’ policy functions, we can first simulate a sta-

tionary cross-section of firms (in the absence of aggregate productivity shocks). This

is done by following a given number of entrant firms (according to their permanent

productivity types and entry shares) along their lifecycles. Regarding business cycle

dynamics, we start from a stationary firm distribution and follow those firms across

time when aggregate shocks are active. The numbers of new entrants are determined

each period residually so that all workers are either employed or search for work at any

of the existing or entering firms.
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Appendix D: Robustness

We explore the robustness of the main calibration results regarding different parameter

choices for unemployment income b and for the returns-to-scale parameter α. Departing

from the benchmark calibration with cubic vacancy costs we consider two variations.

First, we consider the alternative of setting unemployment income to 97.7 percent of

average wages (68% of labor productivity), instead of 70 percent as in the benchmark.

Second, relative to the benchmark with α = 0.7 which gives rise to a plausible labor

share (with fixed capital at any individual firm) we consider the alternative of α = 0.95

which is more in line with a model where capital can be adjusted at the firm level. In

both variations, parameters c, x and (xi0) are readjusted so that the model hits the

same calibration targets as in the benchmark calibration.48

Table 7 replicates Table 2 to show that both model variations are calibrated to match

firm and employment shares in the five size classes. The bottom three rows show how

the shares of younger firms are declining with firm size in the two versions. Relative to

the benchmark calibration, the model with high production function elasticity generates

considerably lower shares of very young firms in the larger size classes, which indicates

slower firm growth for this parameterization.

Figure 6 shows that the cross-sectional behavior of vacancy rates, vacancy yields, hires

rates and layoff rates is almost unchanged relative to the benchmark calibration. That

is, irrespective of the parameter values for b and α, the model with cubic vacancy costs

explains more than half of the cross-sectional variation in vacancy yields, although the

vacancy yield curve for α = 0.95 (green/dotted curve) flattens out at firm growth above

20 percent relative to the benchmark calibration (blue/solid curve).

48The calibration with α = 0.95 requires c = 15.64, K = 80.46 (again b = 0.1 and b/w ≈ 0.7),
x = 0.11, (xi0) = (.164, .184, .198, .218, .245), (σi) = (98.82, 1.00, .153, .025, .002), π = 0.027.
Parameters for the the version with b/w ≈ 0.977 are stated in footnote 44.
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Table 7: Firm size and employment distribution (higher values of b and α)

Size class 1–49 50–249 250–999 1000–9999 ≥ 10000

Data

Firm shares 95.62 3.64 0.54 0.17 0.02
Employment shares 29.31 16.23 10.88 17.64 25.93
% younger than 2 yrs. 24.68 7.24 4.38 2.26 1.08
% younger than 5 yrs. 39.71 16.88 10.19 5.35 3.65
% younger than 10 yrs. 57.76 31.30 20.23 12.01 7.14

Model (high b)

Firm shares 95.78 3.42 0.61 0.17 0.02
Employment shares 30.65 15.87 12.62 18.20 22.67
% younger than 2 yrs. 16.19 3.62 2.55 2.26 1.79
% younger than 5 yrs. 35.62 9.17 6.82 6.06 4.91
% younger than 10 yrs. 58.44 17.91 13.90 12.40 10.13

Model (high α)

Firm shares 96.27 3.06 0.50 0.15 0.02
Employment shares 29.23 16.36 11.60 18.27 24.53
% younger than 2 yrs. 16.13 1.65 1.30 0.95 0.42
% younger than 5 yrs. 35.41 6.79 5.75 4.78 3.50
% younger than 10 yrs. 58.12 15.28 12.24 11.66 7.59

Notes: The top two rows report firm and employment shares in five size classes (calibrated).

The bottom rows are the shares of younger firms in these classes. Data statistics are from the

Business Dynamics Statistics of the Census Bureau for the year 2005. Model statistics are from

a cross section of 4.9 · 106 firms. The model with high b has b ≈ 0.977w, γ = 2, α = 0.7, and

the model with high α has b ≈ 0.7w, γ = 2, α = 0.95.
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Figure 6: Cross-sectional relationships between monthly employment growth and
the vacancy rate, the vacancy yield, the hires rate and the layoff rate. The dashed
curves (in the first three graphs) are from the data used in Davis et al. (2013), the
blue (solid) curves are for the benchmark parameterization (b/w ≈ 0.7, α = 0.7),
the red (closely dashed) curves are for the calibration with b/w ≈ 0.977 and the
green (dotted) curves are for α = 0.95.
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Appendix E: Impulse response in a VAR model

We borrow the methodology for constructing the impulse responses in Figure 4 straight

from Fujita and Ramey (2007) - except for the details discussed below.49 We use data

from 1951:Q1 to 2011:Q4. The data is real quarterly GDP from FRED; the number

of vacancies is from the Help Wanted Index from Barnichon’s Composite Help-Wanted

Index series;50 the number of unemployed is from the CPS; employment is from the

BLS total payroll employment; and population is from the BLS. The job-finding rate

is then calculated in the same way as in Elsby, Michaels, Solon (2009).51 All data

other than GDP are averaged over their monthly (seasonally adjusted) observations to

obtain quarterly series. They are then logged and detrended by regressing each on a

cubic polynomial in time.
To generate impulse responses of output, employment, labor market tightness and
the job-finding rate to a permanent rise in productivity, we first identify exogenous
productivity deviations in the data series and look at how the variables of interest
respond to these. Let

pt ≡ observed (detrended) output per worker ,

θt ≡ observed (detrended) vacancy-unemployment ratio ,

et ≡ observed (detrended) employment-population ratio ,

φt ≡ observed (detrended) job-finding rate ,

and let zt be the unobserved exogenous productivity deviation. To identify zt, we first
estimate (by OLS) the following system:

ln pt =
[
ln pt ln θt ln et lnφt

]
⎡
⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

⎤
⎥⎥⎦
⎡
⎣ L
L2

L3

⎤
⎦+ εpt

=
[
ln pt ln θt ln et lnφt

]
A (L) + εpt ,

where L is the lag operator. Given this estimation,
{
Âij

}
, we follow Fujita and Ramey

(2007) by assuming that the exogenous productivity deviations, ln zt, can be identified

49We are grateful to David Ratner for providing an initial code.
50R. Barnichon, “Building a Composite Help-Wanted Index”, Economics Letters, Vol. 109,

175–178, 2010.
51M. Elsby, R. Michaels and G. Solon, “The Ins and Outs of Cyclical Unemployment”,

American Economic Journal: Macroeconomics, Vol. 1, 84–110, 2009.
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by

ln pt<0 = ln θt<0 = ln et<0 = lnφt<0 = ln zt<0 = 0 ,

ε̂pt = ln pt −
[
ln pt ln θt ln et lnφt

]
Â (L) ,

ln zt = Â11 ln zt−1 + Â12 ln zt−2 + Â13 ln zt−3 + ε̂pt .

Once a series for ln zt has been identified from the data in this way, an AR (3) process
for ln zt can be estimated,

ln zt = C01 ln zt−1 + C02 ln zt−2 +C03 ln zt−3 + εzt

= C0 (L) ln zt + εzt ,

and the relationship between the endogenous variables ln et, ln θt, lnφt and the ex-
ogenous process ln zt can be calculated by estimating the following relationships (by
OLS):

ln et =
[
ln et ln θt lnφt

] ⎡⎣ B111 B112 B113

B121 B122 B123

B131 B132 B133

⎤
⎦
⎡
⎣ L
L2

L3

⎤
⎦+C1 (L) ln zt +D1ε̂

p
t + εet

=
[
ln et ln θt lnφt

]
B1 (L) + C1 (L) ln zt +D1ε̂

p
t + εet ,

ln θt =
[
ln et ln θt lnφt

]
B2 (L) +C2 (L) ln zt +D2ε̂

p
t + εθt ,

lnφt =
[
ln et ln θt lnφt

]
B3 (L) +C3 (L) ln zt +D3ε̂

p
t + εφt .

The impulse-response functions to a permanent increase in exogenous productivity of
1% are then constructed by simulating these estimated relationships forward:

ln zt<0 = ln et<0 = ln θt<0 = lnφt<0 = 0 ,

ln zt≥0 = 0.01 ,

ε̂pt≥0 = ε̂zt≥0 = ln zt≥0 − Ĉ0 (L) ln zt≥0 ,

ε̂et = ε̂θt = ε̂φt = 0 ,

ln et =
[
ln et ln θt lnφt

]
B̂1 (L) + Ĉ1 (L) ln zt + D̂1ε̂

p
t ,

ln θt =
[
ln et ln θt lnφt

]
B̂2 (L) + Ĉ2 (L) ln zt + D̂2ε̂

p
t ,

lnφt =
[
ln et ln θt lnφt

]
B̂3 (L) + Ĉ3 (L) ln zt +D3ε̂

p
t ,

ln pt =
[
ln pt ln θt ln et lnφt

]
Â (L) + ε̂pt .
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Our construction differs from Fujita and Ramey (2007) only in that their estimations are

based on data to 2005, they use three variables (pt, θt, et) for the VAR, and they show

impulse responses for a one-time rather than a permanent shock. We replicated their

settings and find their results, and we checked that adding the fourth variable does not

qualitatively change the outcome for the three initial variables in their methodology.
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