
Database-Driven Web Mashups

Andrei Vancea Michael Grossniklaus Moira C. Norrie

Institute for Information Systems

ETH Zurich

CH-8092 Zurich, Switzerland

{vancea,grossniklaus,norrie}@inf.ethz.ch

Abstract

In most web mashup applications, the content is gener-

ated using either web feeds or an application programming

interface (API) based on web services. Both approaches

have limitations. Data models provided by web feeds are

not powerful enough to permit complex data structures to

be transmitted. APIs based on web services are usually

different for each web application, and thus different im-

plementations of the APIs are required for each web ser-

vice that a web mashup application uses. We propose a

database-driven approach to web mashups that supports

integration at the database level and enables mashup de-

velopers to work with a uniform abstract model and have

direct access to powerful features of database systems. We

describe how we have implemented this approach based on

an object-oriented database system with a rich object model

and a generic proxy mechanism for data integration and

synchronisation.

1. Introduction

A web mashup is a web application that combines data

from multiple web applications in order to create a new ap-

plication [18]. In a web mashup application, the content

is usually generated by web feeds, screen scraping or by

calling a public programming interface. Most of these pro-

gramming interfaces use web service technology [1]. Cur-

rently, four types of web mashups—consumer mashups,

data mashups, enterprise mashups and business mashups—

can be observed. Consumer mashups combine data from

different web sites and use a simple unified graphical in-

terface to display the combined information. An example

of such a mashup would be a web application that inte-

grates digital pictures from flickr.com and displays them on

the Google map interface using the images’ geographical

tags. Data mashups are used to combine more than one data

source into a single source such as, for example, several

news feeds being combined into a single feed. An enterprise

mashup uses the general mashup techniques within a com-

pany’s own internal applications. It usually combines data

from both internal and external sources. Finally, a business

mashup is a combination of all of the above that makes the

result available for a business application.

In this paper, we argue that current approaches to the de-

velopment of web mashup applications lack a powerful data

model for data interchange. As mentioned above, in most

cases, the content is generated using feeds or an applica-

tion programming interface (API) based on web services.

In the former case, the data models provided by web feeds

(RSS or Atom) lack flexibility and do not permit complex

data structures to be transmitted. On the other hand, while

the API approach is flexible, every web application tends

to have a different API. As a consequence, there must be a

different implementation of the APIs for each web service

that a web mashup application uses.

We propose a database-driven approach to web mashups

that allows data integration and mashup logic to be managed

within a database. This enables developers of web mashup

applications to work with a uniform abstract model and to

have direct access to powerful features of database systems

such as declarative querying, constraints, triggers and dy-

namic updates as well as persistence. By using an object-

oriented database system, data exchange is based on objects

which can be arbitrarily complex.

We have implemented a database-driven web mashup ar-

chitecture using an object-oriented database system that is

based on the OM data model [6, 7]. The collection is a cen-

tral concept in the OM model for managing semantic groups

of objects, and we show how it provides a flexible basis for

dealing with data integration and synchronisation issues. A

generic proxy mechanism [19] was used to manage commu-

nication and synchronisation between the web mashup ap-

plication and its data sources, thereby enabling participants

to exchange objects and collections of objects directly from

their local databases. The final web site can then be built on

top of the database using a content management system.

162

http://nbn-resolving.de/urn:nbn:de:bsz:352-277015

We begin in Sect. 2 with a general discussion of web

mashup requirements and existing approaches. Section 3

gives an overview of the generic proxy mechanism. In

Sect. 4, we then present our database-driven web mashup

architecture. This is followed in Sect. 5 with an outline of

how an application can be developed using our approach.

Section 6 discusses some issues related to the efficiency and

the development process of web mashup applications using

our approach. Finally, some concluding remarks are given

in Sect. 7.

2. Background

The term mashup has its origin in the music culture,

where a mashup is a remix created by combining different

music compositions [4]. In a similar way, a web mashup

combines data from different web applications in order to

offer users an integrated experience. Usually, the content is

provided by web feeds such as RSS and Atom, or by using

a third party programming interface based on web service

technologies. As mentioned previously, currently avail-

able web mashups can be classified into four categories—

consumer mashups, data mashups, enterprise mashups, and

business mashups [14] which are a combination of the other

three. We now examine each of the three basic categories in

turn and the support that is currently offered to create such

mashups.

Consumer mashups combine data from different web

sites and use a simple unified graphical interface to dis-

play the combined information. These are the most

common form of web mashups found today. The Pro-

grammableWeb [18] site stores more the 1800 consumer

web mashups. Most of them are non-commercial experi-

ments, created in an ad-hoc manner. The site offers more

than 200 different APIs for creating and combining types

of applications such as search engines, weather data, instant

messaging, blogs and RSS aggregators. Many commercial

web sites provide interfaces that allow applications to be

written using the data offered by the site [4]. Amazon.com

was one of the first sites that released a free programming

interface. Nowadays, eBay, Flickr, Google and YouTube

also offer powerful programming interfaces. The term web

mashup was first used to refer to the housingmaps.com site

which displays rentals and sale adds from craiglist.com in

Google Maps.

Data mashups are used to combine more than one data

source into a single source. For example, more than one

RSS feed can be combined into a single one. There are

many tools on the market that allow data mashups to be

created in a simple manner. For example, Yahoo Pipes [15]

is a web application that permits users to build aggregate

web feeds by integrating data from different sources using

a very intuitive graphical user interface. Microsoft offers a

very similar application, called Microsoft PopFly [17]. The

Google Mashup Editor [13] is another on-line application

used for creating such mashups.

An enterprise mashup combines external web data with

the internal data of an organisation [2]. For example, an en-

terprise mashup for a particular organisation could combine

public data that refers to the prices of the properties in dif-

ferent areas of a city with the internal data about properties

owned by that organisation. JackBE Presto [16] is a mashup

platform designed for creating enterprise mashups.

Recently, web mashups have also become a topic of in-

terest to the research community. MashMaker [3] is a web-

based tool that can build mashups by graphically composing

and integrating data from different sources. Even though it

is not exclusively intended to build web mashups, the ap-

proach is very similar to the approaches found in the com-

mercial products mentioned above. A similar approach is

Mash-o-matic [5], a utility that combines different informa-

tion fragments in order to generate input data for mashups.

Based on this input data, it also generates the code for the fi-

nal mashup system that can then be deployed. Their system

uses an application called Sidepad for collecting and organ-

ising data. The information fragments are extracted by the

mashup developer from different external sources.

Another approach is taken by Yu et al. [20] who have

developed a framework for integration at the presentation

layer. Instead of trying to combine the application logic

and data, the framework rather integrates their graphical

front-ends. Since the framework follows a model-driven ap-

proach, an application built with the framework is specified

in terms of a compositional model and the middleware. The

compositional model represents the logic that coordinates

the components at runtime, while the middleware handles

communication between the components in an event-driven

manner.

Some research projects focus on the integration of web

services. One such approach is Mashup Feeds [11], a sys-

tem that enables developers to create new feeds by inte-

grating web services. Feeds are expressed as continuous

queries over the existing web services and feeds. In order

to create the mashup application, a developer must specify

a collection-based stream operator that performs the extrac-

tion of history-based tracking information and summaries.

This operator is composed from a sequence of sub-operators

such as subscribe, join, select and map. The Web Mashup

Scripting Language (WMSL) [10] is a new scripting lan-

guage that enables end-users to quickly define mashups that

integrate two or more web services. This task is accom-

plished by adding metadata and JavaScript code directly

to the HTML source. The metadata is specified in the

form of mapping relations that are then used to reconcile

the structural, syntactic or representational mismatches be-

tween data models.

163

Other approaches are suited to the development of en-

terprise web mashup applications. Damia is an enterprise

data integration service where business users can create and

catalogue data feeds of high value for consumption by situa-

tional applications [2]. The system provides a user interface

that allows data mashups to be created as data flow graphs

by the user. Further, the system offers a server that contains

the execution engine as well as a powerful API used for ex-

ecuting and managing mashups. Finally, in Thor et al. [12],

a framework architecture is presented that can be used for

the development of dynamic data integration mashups. The

framework consists of several components such as query

generation and on-line matching as well as additional data

transformation modules. The proposed architecture sup-

ports interactive and sequential result refinement. The sys-

tem uses wrappers for transforming external data into a self-

describing XML structure.

What all these approaches have in common is the fact

that the data models used for data interchange are usually

relatively simple. Applications developed with tools like

Yahoo pipes or Microsoft PopFly are usually used to ag-

gregate web feeds. The data models offered by these web

feeds are not powerful enough to support more complex

data structures. While web services allow complex struc-

tures to be interchanged, usually each participant has its

own API and so the application must have different imple-

mentations for each such web service based API. Object-

oriented database systems support semantically richer data

models. Usually such models support object type inheri-

tance and also have strong support for managing collections

of objects. We believe that webmashup application devel-

opment could profit from these concepts.

The subscription-based approach used by the web feeds

can be adapted and used with the data model supported by

an object-oriented database system. Thus, similar to the

way subscription is used with web feeds, a client database

can subscribe to some of the objects and collections offered

by a server database system. The architecture takes care of

synchronisation between the client database and the server

database. More than that, bi-directional communication can

also be supported. Thus, both the client and server can up-

date shared objects and collections and have these changes

propagated.

In the remaining sections, we describe the details of our

approach in terms of a specific database-driven architecture

that we have developed and show how it can be used to

develop web mashup applications. Our architecture was de-

veloped using OMS Avon, an object-oriented database sys-

tem based on the OM data model [6, 7]. OMS Avon is im-

plemented as a semantic data management layer on top of

db4o [8] to support features such as role modelling, associa-

tions, constraints, triggers and a declarative query language

in addition to the basic features required for object persis-

tence offered by db4o.

For the sake of simplicity, we assume in the following

sections that all participant databases in our web mashup

architecture are implemented using OMS Avon. In prac-

tice, it is more likely that the data sources would be based

on a variety of technologies such as relational or XML da-

tabase systems. As is common in integration architectures,

wrapper components would be required to map to and from

the global model, which in our case is the OM data model.

We omit these wrapper components in the description of our

architecture to enable us to focus on the basic mechanisms

for data integration and synchronisation.

3. Generic Proxy

The communication and synchronisation mechanisms in

our web mashup architecture were built using a generic

proxy mechanism [19] which we describe in this section.

Our goal was to provide a general mechanism that can be

embedded in database management systems in order to sup-

port the integration of external heterogeneous data sources.

This means that it had to be able to support the different cat-

egories of data integration systems that have been proposed

to meet widely varying requirements and different levels of

heterogeneity. In our system, the generic proxy mechanism

is used to enable the communication between the partici-

pants of a mashup application. This is done by having a

bi-directional synchronisation process of the two different

views of an OM object stored in different database systems.

In the OMS Avon object-oriented database system, collec-

tions of objects are internally represented as objects, so the

generic proxy mechanism can be used to synchronise col-

lections as well as individual objects.

The two general categories of data integration systems

common nowadays are based on two different paradigms.

The virtual view approach provides a virtual, unified view of

data held in a number of data sources in order that users and

applications can query across heterogeneous data sources.

Mechanisms are provided to allow global queries expressed

over the unified view to be decomposed into multiple sub

queries which are sent to the different external data sources

for processing, and the results of these local queries are then

combined according to the unified view. The module that

decomposes the global query and combines the results of

the local queries is usually referred to as a mediator.

In contrast, a materialised view approach provides an

actual repository of integrated information available for

querying and analysis. Data is extracted from the data

sources and stored in a central repository which can be

queried directly without any need to refer to the external

data sources. Data warehouse systems are an important cat-

egory of systems based on the materialised view approach.

Since the data from the information sources is transferred to

164

proxy process is established when the generic proxy is cre-

ated.

A proxy process monitors the external information

source and notifies the database when the external source is

changed. As a result of the notification, the database system

will schedule the corresponding proxy object for synchro-

nisation.

An important issue related to the design of the proxy

processes is the way in which a proxy object is referenced

when the proxy process wants to notify the database system

that a particular external information source was changed.

A mechanism was added that allows a proxy object to be

referenced with the generic identifier of the corresponding

external information source. A generic identifier is a value

of an arbitrary type that can be used to refer to an external

information source in the outside world.

We offer a programming interface that allows devel-

opers to write different implementations of proxy pro-

cesses. These implementations usually perform some kind

of schema mapping and also handle the communication be-

tween the database and the external information source.

We currently have different implementations of the generic

proxy that enable the integration of data from different ex-

ternal sources. One such implemenation enables the inte-

gration of data from XML files. In this application, the

proxy objects have associated elements stored in an exter-

nal XML file. The schema mapping between the OM model

and the XML model as well as the access to the external file

is done in the proxy process.

Synchronisation One of the most important aspects of

the generic proxy mechanism is the synchronisation be-

tween proxy objects and external data sources. We maintain

a FIFO list that contains the proxy objects that are scheduled

for synchronisation with their external information sources.

A proxy object is added to this list in one of the following

cases.

a) If the value of one of its attribute is modified. A change

in the proxy object must be followed by a change in the

external information source, so the proxy object must

be synchronised.

b) As a result of the modification of the external infor-

mation source. We have already described above the

way in which the database system is notified when the

external source is changed.

c) At fixed time intervals. Proxy objects may be set to be

periodically resynchronised.

The generic proxy mechanism shares many similarities

with integration systems that use the materialised view ap-

proach. In both approaches, the data from the information

procedure synchronise(proxyObject)

begin

proxyProcess =

proxyObject.getAssociatedProcess();

remoteObject =

proxyProcess.readRemoteObject();

result = merge(proxyObject,

remoteObject);

if (proxyProcess.setRemoteObject(result)

== OK)

then

proxyObject = result;

else

proxyObject = remoteObject;

end;

Figure 3. Proxy object synchronisation

sources are extracted and stored in the database, allowing

the queries to be evaluated without any need to refer to the

external information sources. The major difference between

the generic proxy mechanism and other systems is the archi-

tectural design. Most of the other systems are constructed

using a middleware approach. A layer is added between the

database and the information sources to handle the monitor-

ing and integration of the external sources into the database.

The generic proxy mechanism, however, is situated inside

the database management system which allows the synchro-

nisation between the database and the external sources to be

performed automatically by the system in a transparent way.

The proxy processes handle both the monitoring and the in-

tegration of the external information sources.

Another important difference between the generic proxy

mechanism and the classic approaches—materialised and

virtual views—is the fact that our mechanism may permit

the client of the integration server to modify the external

information sources. As Fig. 3 illustrates, the current state

of the information source is compared with the value of the

proxy object representing the database view of the infor-

mation source during the synchronisation process. A new

proxy object is then constructed and the value of the infor-

mation source is changed.

By using the generic proxy mechanism, the synchronisa-

tion between the information sources and the database sys-

tem is done automatically, in an efficient manner, when the

information source is changed or when the value of its proxy

object is modified. The system does not guarantee that the

client will work with the latest versions of the information

sources, but the synchronisation is usually done within a

reasonable amount of time. We think that our solution is

a good compromise between the real-time synchronisation

offered by the mediated approach and the periodic synchro-

nisation mechanism of the data warehousing approach.

166

4. Web Mashup Architecture

Our web mashup architecture allows a web application

to share object-oriented database entities—objects and col-

lections of objects—directly from its local database and

other participants to subscribe to the entities provided by

the application through the use of the generic proxy mecha-

nism. Figure 4 illustrates this architecture. The two main

components of our architecture are the mashup applica-

tion server and the information provider. An information

provider shares a list of objects and collections. A mashup

application server can subscribe to one or more entities

shared by the information provider. The communication

between the participants is done using the SOAP protocol.

Our architecture assures the bi-directional synchronisation

between the objects and collections stored in the informa-

tion providers and their materialised views of the mashup

application servers. The web sites are built on top using

content management systems. We say that a mashup appli-

cation server is a client of an information provider if it is

subscribed to at least one entity shared by the information

provider. It should be noted that the mashup application

server and the information providers are actually roles, and

a participant can simultaneously be both a mashup applica-

tion server in relation to some participants and an informa-

tion provider for others.

An information provider contains middleware on top

of the database system, that handles the communication

with its clients and also the synchronisation process. The

main components of this middleware are the Subscription

Manager, the Object Registry, the Collection Registry, the

Object Dispatcher, the Collection Dispatcher, the Session

Manager and the Web services interface. In order for an

object or a collection to be shared with the outside world,

they must first be registered with the object registry and

collection registry, respectively. The mashup application

server uses the generic proxy mechanism to access objects

shared by an information provider. The subscription han-

dler takes care of the clients’ subscriptions to the infor-

mation provider. Communication between the information

provider and its clients is done using a web service inter-

face.

Let us consider an example where we want to develop

an on-line web store application using our web mashup sys-

tem. Apart from the usual features expected from an on-

line store application, new products may be added to the

on-line store directly by the producers using a well defined

business-to-business interface. The server should also al-

low clients to be notified when new products are added or

removed. For each producer, the on-line store will register

a collection containing objects of type product. Using our

mashup architecture, producers can subscribe to that collec-

tion. When a producer wants to sell a new product using the

on-line store, they add an element to that collection. Using

the synchronisation mechanism, the on-line store will re-

ceive the products and perform the necessary operations to

display the products on the web site. The on-line store will

also register collections that contain the list of all products

and the list of offers.

Object Registry The object registry is used for register-

ing objects in the information provider. An object must be

registered in order to be available to the clients. After reg-

istration, a client can subscribe to the object. The interface

of the ObjectRegistry class is given in Fig. 5. The method

registerObject() is used for registering objects. The object-

Name argument represents the name that will be used to

refer to the newly registered object from the clients. ob-

jectId is the internal database identifier of the object. The

OM model supports multiple instantiation which means that

objects may have multiple types and types represents the

list of types of the specified object that can be accessed by

clients. The getRegisteredObjects() method returns the col-

lection of the registered objects. isRegistered() returns true

if there is a registered object with the specified name. Fi-

nally, method getTypes() returns the types of the specified

object.

public class ObjectRegistry {

public void registerObject(

final String objectName,

String objectId,

Collection<String> types) { ... };

public Collection<String>

getRegisteredObjects() { ... };

public boolean isRegistered(

final String objectName) { ... };

public Collection<String> getTypes(

final String objectName) { ... };

public long getObjectVersion(

final String objectName) { ... };

}

Figure 5. ObjectRegistry interface

Each registered object is associated with a version. The

version is a positive integer which is incremented every time

the object changes. Versions are used during the synchroni-

sation process. Each time the object is modified, either from

within the database or as the result of a change performed

by one the clients that subscribed to the object, the version

167

public class SessionManager {

public String createSession() { ... };

public void closeSession(

String session) { ... };

public boolean sessionExists(

String session) { ... };

}

Figure 7. SessionManager interface

Subscription Manager As mentioned before, our web

mashup interface is based on subscriptions. This means that

clients can subscribe to the objects and collections provided

by the information provider. Subscriptions are handled by

the subscription manager. Its interface is presented in Fig. 8.

The communication session discussed above is specified as

the first argument of each method. Methods subscribe() and

subscribeCollection() are used by a client to subscribe to an

object or a collection, respectively. unsubscribe() is used

when a client wants to unsubscribe from an information

provider. The getSubscription() method returns the list of

all subscriptions.

public class SubcriptionManager {

public void subscribe(String session,

String objectName) { ... };

public void subscribeCollection(

String session,

String collectionName) { ... };

public void unsubscribe(String session,

String Name) { ... };

public Collection<String>

getSubscriptions(

String session) { ... };

}

Figure 8. SubcriptionManager interface

Object Dispatcher The object dispatcher handles the

synchronisation of the objects shared through the web

mashup interface. It is connected through the web service

interface to the generic proxy implementation of each client.

The dispatcher has methods returning the latest values of the

shared objects. It also permits the client to change the data

of shared objects. Figure 9 gives an overview of the object

dispatcher class. The method getAttributeValues() returns

all values of the attributes pertaining to a particular type of

the object specified as an argument. Note that the specified

object has to be registered first. getAttributeValue() returns

the values of a single attribute, while setAttributeValue() and

setAttributeValue() are used for updating object values.

class ObjectDispatcher {

public Map<String, Object>

getAttributeValues(String objectName,

String typeName) { ... };

public Object getAttributeValue(

String objectName, String typeName,

String attributeName) { ... };

public void setAttributeValue(

String objectName, String typeName,

String attributeName,

Object value) { ... };

public void setAttributeValues(

String objectName, String typeName,

Object[] values) { ... };

public Set<String>

getChanges(String session) { ... };

}

Figure 9. ObjectDispatcher interface

The method getChanges() returns a list of objects or col-

lections that have been changed since the last synchronisa-

tion. This method is used during the synchronisation pro-

cess. Its implementation compares the current versions of

the objects with the version stored in the session informa-

tion for the specified session and returns the name of objects

for which the two versions are different.

Collection Dispatcher The collection dispatcher handles

the synchronisation of collections shared through the web

mashup interface. Figure 10 contains the interface of the

collection dispatcher. The method getChanges() returns the

list of the collections that have been modified since the last

synchronisation. getCollectionExtent() returns the list of el-

ements contained in the collection specified as an argument.

Each element contained in the collection will also be reg-

istered in the information provider. getElementsAdded()

returns the list of elements added to the specified collec-

tion since the last synchronisation, while getElementsRe-

moved() returns the list of elements removed from the col-

lection since the last synchronisation.

169

class CollectionDispatcher {

public Set<String>

getChanges(String session) { ... };

public List<String> getCollectionExtent

(String colName) { ... };

public List<String> getElementsAdded

(String session, String colName)

{ ... };

public List<String> getElementsRemoved

(String session, String colName)

{ ... };

}

Figure 10. CollectionDispatcher interface

Web Services Interface The web mashup interface han-

dles the communication between the mashup server and the

information providers. It was designed using the facade de-

sign pattern. It allows the mashup server to access the mid-

dleware of an information provider through a single uni-

fied interface. The web service interface uses Tomcat and

the Apache web server in order to communicate with the

clients. The web mashup interface communicates with the

rest of the mashup server modules using remote method in-

vocation (RMI).

Web Mashup Generic Proxy The communication part

of the mashup application server is implemented using the

generic proxy mechanism described in Sect. 3. As de-

scribed before, a generic proxy is composed from the proxy

object and the proxy process. The proxy object represents

the materialised view of the entity to each subscribed client

and the proxy process handles the synchronisation between

the proxy entity and the associated entity from the informa-

tion provider.

When a client subscribes to an object or to a collection

shared by an information provider, a new generic proxy is

created locally. The proxy object is then the local handle of

the object from the information provider and contains all of

its types and values. A proxy collection contains all of the

elements from the collection of the information provider.

When a new object is added to the collection, a new proxy

object will be added to the proxy collection. The newly cre-

ated proxy collection will refer to the new object from the

collection. Additionally, a proxy process is created for each

information provider to which a clients connects. Thus,

two or more proxy objects which refer to objects from the

same information provider will have the same proxy pro-

cess. The implementation of the proxy process communi-

cates with the information provider using its web service

interface. The proxy process periodically synchronises the

local view of the data stored in the proxy objects with the

data on the information provider.

As discussed in Sect. 3, the synchronisation of the proxy

objects is done using specific implementations of the proxy

process interface. The proxy process implementation han-

dles the schema mapping, the synchronisation and the com-

munication with the external information source. Due to

the fact that both the information provider and mashup ap-

plication server use the same data model, schema mapping

is not necessary and thus the proxy process only handles

the communication with information providers and the syn-

chronisation of the shared entities. The pseudo-code of the

proxy process implementation for our web mashup archi-

tecture is illustrated in Fig. 11. In order to communicate

with the information provider, a session must first be cre-

ated. After session creation, it periodically checks if there

were any changes performed on the information provider

to the objects or collections to which the clients are sub-

scribed, or if there are locally modified proxy objects. A

change to an object means a modification performed to its

types or values, while a change to a collection implies that

new elements were added or some elements were removed.

getChanges() returns a list of modified objects or collec-

tions, while getDirtyEntites() returns the names of the entity

for each local proxy object of collections modified. Mod-

ified objects are then scheduled for synchronisation. The

information provider is polled every t seconds, where t is

a numeric constant that can be set by the user. Its default

value is 60. Finally, the session is closed using the clos-

eSession() call.

Synchronisation compares the values of the object on the

information provider with the values of the associated proxy

object. If both values have changed, the value from the in-

formation provider will be kept, otherwise the values of the

attributes that were changed are preserved.

5. Application developement

In this section, we describe in detail how the on-line store

example presented earlier could be implemented using our

web mashup infrastructure. Let us assume that there are two

on-line stores that use our architecture, two producers—a

record label and publishing house—that sell products using

the on-line store. Many on-line stores have affiliate pro-

grams which allow external sites to sell products offered

by the on-line store, and receive a small percentage of the

price of the products sold. The affiliate site must have ac-

cess to the products offered by the on-line store. In this

example, we introduce an aggregator that receives, using

170

nism, the object will also be inserted in the two collections,

both named PublishingHouseProducts, from the two servers

onlinestore1.com and onlinestore2.com.

create type product (name: string,

producer: string, quantity: integer,

price: real);

create proxy collection OnlineStore1Books

webmashup "onlinestore1.com"

"PublishingHouseProducts":

set of product;

create proxy collection OnlineStore2Books

webmashup "onlinestore2.com"

"PublishingHouseProducts":

set of product;

$book1 := create object;

dress $book1 with product (

name = "George Orwell: 1984",

producer = "FOO Publishing House",

quantity = 100,

price = 23.4

);

$book2 := create object;

dress $book2 with product (

name = "Stephen Hawking:

A Brief History of Time",

producer = "FOO Publishing House",

quantity = 150,

price = 30

);

insert in onlineStore1Books:

[$book1, $book2];

insert in onlineStore2Books:

[$book1, $book2];

Figure 14. Publishing house script

The script executed in the database of the second

producer—the record label—is illustrated in Fig. 15. The

script is similar to the one executed in the database of the

first producer.

The aggregator integrates the products from both on-line

stores and provides users with a web interface that allows

products to be accessed from both on-line stores in a unified

interface. The OML script used by the aggregator is illus-

trated in Fig. 16. First, the object type product is created.

Afterwards, four proxy collections are created that will be

used to synchronise the collections offered by the two on-

line stores using our web mashup architecture. The web

site giving access to the unified view of the web stores is

then developed on top of the database and uses the defined

create type product (name: string,

producer: string, quantity: integer,

price: real);

create proxy collection OnlineStore1CDs

webmashup "onlinestore1.com"

"RecordLabelProducts": set of product;

create proxy collection OnlineStore2CDs

webmashup "onlinestore2.com"

"RecordLabelProducts": set of product;

$cd1 := create object;

dress $cd1 with product (

name = "Snow Patrol - Chasing Cars",

producer = "FOO Record Label",

quantity = 100,

price = 50

);

$cd2 := create object;

dress $cd2 with product (

name = "Coldplay - X&Y",

producer = "FOO Record Label",

quantity = 150,

price = 30

);

insert in onlineStore1CDs:

[$cd1, $cd2];

insert in onlineStore2CDs:

[$cd1, $cd2];

Figure 15. Record label script

collections.

6. Discussion

In the previous sections, we have described the architec-

ture of our database-driven web mashup system and how

applications can be developed using our system. In this sec-

tion, we will discuss some issues related to the efficiency

and the development process of web mashup applications

using our approach and compare our approach to some of

the projects introduced in Sect. 2.

We are using the object-oriented data model OM for the

exchange of data between the server and its clients. The

OM data model supports multiple inheritance, multiple in-

stantiation and multiple classification through built-in sup-

port for collections. In contrast to the relational model of

data, the OM data model features directed associations as a

first order concept to relate objects to one another. Finally,

the OM data model also offers a rich set of constraints that

raise its level of expressiveness and empower the developer

172

create type product(name : string,

producer : string, quantity : integer,

price : real);

create proxy collection onlineStore1Products

webmashup "onlinestore1.com"

"Products": set of product;

create proxy collection onlineStore1Offers

webmashup "onlinestore1.com"

"Offers": set of product;

create proxy collection onlineStore2Products

webmashup "onlinestore2.com"

"Products": set of product;

create proxy collection onlineStore2Offers

webmashup "onlinestore2.com"

"Offers": set of product;

Figure 16. Aggregator script

of an application to specify their requirements in more de-

tail. We believe that building on a data model that is more

versatile than the models currently used in web mashup ap-

plication development will lead to better interoperability of

such applications.

Currently, developing an application as described in

Sect. 5 implies that both servers and clients have native da-

tabase support for the OM data model. In our present imple-

mentation, both the clients and the server use OMS Avon,

a semantic layer built on top of db4o, that supports the OM

data model. As mentioned in Sect. 2, in practice, external

information providers would most likely use a database sys-

tem that uses another data model such as a relational sys-

tem and a wrapper component would be required to map

between the local data model and the OM model. This is

common to most data integration architectures and a small

number of such components can be provided to cater for the

most common categories of information providers. We note

that since the OM model is actually an extension of the E/R

model of data such mappings are well-known and it is thus

relatively straightforward to implement these mapping lay-

ers. While such a mapping layer introduces another level of

indirection, we are convinced that the benefits of having a

common, semantically rich data model outweigh this addi-

tional overhead. Finally, using a database system as a de-

velopment platform also has other advantages. A database

system offers technologies such as triggers and declarative

query mechanisms that can also be used in the development

of web mashups.

The web site will be generated from the objects stored in

the database using a content management system. The web

mashup system is separated from the site generation. This

means that data integrated in the database using our mashup

architecture could be used by a normal local database appli-

cation in a transparent manner. Local database applications

do not need to know that the objects stored in the database

were gathered from external web sources.

We think that our system is especially suited to the de-

velopment of enterprise web mashup applications. An en-

terprise web mashup application combines data from both

external data sources such as the World Wide Web and in-

ternal sources. The generic proxy mechanism allows users

to add proxies to different types of external data sources

by creating different implementations of the generic proxy

interface. For example, an application could be developed

that combines data from a web server using the web mashup

interface and local data from an XML file using an imple-

mentation of the generic proxy interface that integrates data

from the XML files.

The communication between a mashup application

server and an information provider is done periodically. As

we have mentioned, communication is stateful. Reading

data is associated with a session and thus the information

provider knows the entities to which a mashup application

server has subscribed. Using this information, communi-

cation between the information provider and its clients be-

comes quite efficient. Communication is initiated by the

mashup application server requesting the list of entities that

have been modified since the last synchronisation. From

the list of objects and collections to which the client is sub-

scribed, the information provider extracts the ones that have

been modified. This on-demand synchronisation leads to an

efficient system since entities are not exchanged frequently

between the mashup server and the information providers.

Many of the current research projects related to web

mashup technologies handle integration in the presentation

layer, for example Yu et al. [20]. In our approach, the in-

tegration is done at the data level. We believe that the two

kinds of systems are suited to different types of applications.

Systems like the one described in Yu et al. [20] are suited to

applications in which the user expects a real-time notifica-

tion of modifications performed in one of the components.

The above-mentioned system has an event-driven middle-

ware that handles the real-time communication between the

components. The volume of data exchanged in this kind

of system is assumed to be low. Because the synchroni-

sation between the client and server is done periodically,

our system does not offer a real-time notification mecha-

nism and is, therefore, better suited to applications that do

not require real-time notifications. While changes are also

propagated within a reasonable amount of time, the volume

of data that is exchanged can be very large. As mentioned

above, the server maintains a list of entities to which each

client is subscribed and thus communication can be done

efficiently even for large volumes of data. For example, in

the on-line store application presented in this paper, change

173

propagation is not required to be done in real-time. After

a new product is added to an on-line store, it is reasonable

to expect that the aggregator will receive the information

about the new product within a couple of minutes.

Using the approach described in [11], a user can cre-

ate new integrated feeds as continuous queries over existing

web services and feeds. Using our system, it is possible to

create a new object or collection from two or more exist-

ing entities that are shared by other participants. This could

be accomplished using the trigger mechanism to be notified

when a proxy object or collection is changed and using the

data manipulation language to update the resulting object or

collection. The newly created entities can then be published

to the web mashup server. As trigger and query mechanisms

are natively supported by database systems, one can create

powerful applications that combine two or more external

sources into a single entity.

WMSL [10] uses mapping relations in order to reconcile

the syntactic mismatches between data models. A similar

problem could also arise in applications that are built us-

ing our approach. A client could import object from dif-

ferent servers that represent the same concept, but are rep-

resented using different schema. However, because we use

the database system as a development platform, the schema

mismatching could be solved directly in the database, using

common schema matching algorithms [9].

7. Conclusions

We have shown how web mashups can be supported by

integration and synchronisation at the database level. In par-

ticular, we have presented a web mashup architecture based

on the object-oriented database system OMS Avon which

offers full database functionality such as constraints, trig-

gers and a declarative query language on top of the open

source object database db4o. Importantly, it also offers a

semanticaly rich object-oriented data model OM which sup-

ports concepts such as collections and associations as well

as support for role modelling through multiple classifica-

tion and multiple instantiation. We also presented a generic

proxy mechanism for data integration and synchronisation,

showing how it could be used to support a database-driven

web mashup architecture.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Se-

vices: Concepts, Architectures and Applications. Springer

Verlag, 2004.

[2] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie,

V. Markl, L. Mau, Y.-H. Ng, D. Simmen, and A. Singh.

Damia: A Data Mashup Fabric for Intranet Applications.

In Proceedings of International Conference on Very Large

Data Bases (VLDB’07), Vienna, Austria, 2007.

[3] R. J. Ennals and M. N. Garofalakis. MashMaker: Mashups

for the Masses. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIG-

MOD’07), Beijing, China, pages 1116–1118, 2007.

[4] I. R. Floyd, M. C. Jones, D. Rathi, and M. B. Twidale. Web

mash-ups and patchwork prototyping: User-driven techno-

logical innovation with web 2.0 and open source software.

In Proceedings of Annual Hawaii International Conference

on System Sciences (HICSS’07), pages 86–95, 2007.

[5] S. Murthy, D. Maier, and L. Delcambre. Mash-o-matic.

In Proceedings of the ACM Symposium on Document Engi-

neering (DocEng’06), Amsterdam, The Netherlands, pages

205–214, 2006.

[6] M. C. Norrie. An Extended Entity-Relationship Approach to

Data Management in Object-Oriented Systems. In Proceed-

ings of International Conference on the Entity-Relationship

Approach, Arlington, TX, USA, pages 390–401, 1994.

[7] M. C. Norrie. Distinguishing Typing and Classification

in Object Data Models. In H. Kangassalo, H. Jaakkola,

S. Ohsuga, and B. Wangler, editors, Information Modelling

and Knowledge Bases VI, pages 399–412. IOS Press, 1995.

[8] J. Paterson, S. Edlich, H. Horning, and R. Horning. The

Definitive Guide to db4o. Apress, 2006.

[9] E. Rahm and P. A. Bernstein. A Survey of Approaches to

Automatic Schema Matching. VLDB Journal: Very Large

Data Bases, 10(4):334–350, 2001.

[10] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne. Web

Mashup Scripting Language. In Proceedings of the Inter-

national Conference on World Wide Web (WWW’07), Banff,

Alberta, Canada, pages 1305–1306, 2007.

[11] J. Tatemura, A. Sawires, O. Po, S. Chen, K. S. Candan,

D. Agrawal, and M. Goveas. Mashup Feeds: Continuous

Queries Over Web Services. In Proceedings of the ACM

SIGMOD International Conference on Management of Data

(SIGMOD’07), Beijing, China, pages 1128–1130, 2007.

[12] A. Thor, D. Aumueller, and E. Rahm. Data Integration

Support for Mashups. In Proceeding of the International

Workshop on Information Integration on the Web, Vancou-

ver, Canada, pages 104–109, 2007.

[13] http://editor.googlemashups.com. Google

Mashup Editor.

[14] http://en.wikipedia.org/wiki/Mashup_

(web_application_hybrid). Wikipedia: Mashup

(Web Application Hybrid).

[15] http://pipes.yahoo.com. Yahoo Pipes.

[16] http://www.jackbe.com. JackBE.

[17] http://www.popfly.com. Microsoft PopFly.

[18] http://www.programmableweb.com. Pro-

grammableWeb.

[19] A. Vancea, M. Grossniklaus, and M. C. Norrie. Generic

Proxies – Supporting Data Integration Inside the Database

(Poster). In Proceedings of International Symposium on Dis-

tributed Objects and Applications (DOA’07), Vilamoura, Al-

garve, Portugal, 2007.

[20] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel,

and M. Matera. A Framework for Rapid Integration of Pre-

sentation Components. In Proceedings of the International

Conference on World Wide Web (WWW’07), Banff, Alberta,

Canada, pages 923–932, 2007.

174

	Text1: Ersch. in: ICWE'08: Eighth International Conference on Web Engineering : proceedings : 14-18 July 2008, Yorktown Heights, New York, USA / Daniel Schwabe ... (eds.). - Piscataway, N.J. : IEEE, 2008. - S. 162-174. - ISBN 978-0-7695-3261-5http://dx.doi.org/10.1109/ICWE.2008.13
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-277015

