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The quest for fundamental tests of quantum mechanics is an ongoing effort. We here address the question of what
are the lowest possible moments needed to prove quantum nonlocality and noncontextuality without any further
assumptions—in particular, without the often assumed dichotomy. We first show that second-order correlations
can always be explained by a classical noncontextual local-hidden-variable theory. Similar third-order correlations
also cannot violate classical inequalities in general, except for a special state-dependent noncontextuality.
However, we show that fourth-order correlations can violate locality and state-independent noncontextuality.
Finally we obtain a fourth-order continuous-variable Bell inequality for position and momentum, which can be
violated and might be useful in Bell tests, closing all loopholes simultaneously.
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I. INTRODUCTION

Certain quantum correlations cannot be reproduced by
any classical local-hidden-variable (LHV) theory, as they
violate, e.g., the Bell inequalities for correlations of results
of measurements by separate observers [1]. The Bell test must
be performed under the following conditions: (i) dichotomy
of the measurement outcomes or at least some restricted
set of outcomes in some generalizations [2], (ii) freedom of
choice of the measured observables [3], and (iii) a shorter
time of choice and measurement of the observable than
the communication time between the observers. Despite
considerable experimental effort [4], the violation has not
yet been confirmed conclusively, due to several loopholes
[5]. The loopholes reflect the fact that the experiments have
not fully satisfied all the conditions (i)–(iii) simultaneously.
In fact, the Bell test is stronger than the entanglement
criterion, viz., the nonseparability of states [6]. The latter
already assumes a quantum mechanical framework (e.g., an
appropriate Hilbert space), while the former is formulated
classically. The loophole-free violation of a Bell inequality—
not just the existence of entanglement—is also necessary to
prove the absolute security of quantum cryptography [7].

Nonclassical behavior of quantum correlations can appear
also as a violation of noncontextuality. Noncontextuality
means that the outcomes of experiments do not depend on
the detectors’ settings so that there is a common underlying
probability for the results of all possible settings while
the accessible correlations correspond to commuting sets
of observables. The Kochen-Specker theorem ingeniously
shows that noncontextuality contradicts quantum mechanics
[8]. Noncontextuality is testable in realistic setups [9]. In
contrast to noncontextuality, Bell-type tests of nonlocality
without further assumptions must exclude also contextual
LHV models, as correlations of outcomes for different settings
are not simultaneously experimentally accessible for a single
observer, even if they accidentally commute. Moreover, non-
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contextuality may be violated for an arbitrary localized state
(state-independent noncontextuality [10]) while Bell-type tests
make sense only for nonlocally entangled states. If a Bell-type
inequality is violated then state-dependent noncontextuality is
violated, too, but not vice versa.

As the Bell and noncontextual inequalities are often re-
stricted to dichotomic outcomes, e.g., A = ±1, generalizations
have been investigated, including the many-outcome case [2].
Recently, Cavalcanti, Foster, Reid, and Drummond, (CFRD)
[11] proposed a way to relax the constraint of dichotomy,
allowing any unconstrained real value. CFRD constructed a
particularly simple class of inequalities holding classically,
while seemingly vulnerable by quantum mechanics. The in-
equalities involve nth moments 〈An−l−mBlCm〉 of observables
A, B, and C, and nonnegative integers l, m, and n − l − m,
where in general the higher n is, the greater the chances to
violate the corresponding CFRD inequality. On a practical
level, measuring higher moments or binning is not a problem
if the statistics consists of isolated peaks. However, in many
experiments, especially in condensed matter [12], the interest-
ing information is masked by large classical noise. This noise
then dominates the signal and makes the binning unable to
retrieve the underlying quantum statistics, which is accessible
only by measuring moments and subsequent deconvolution.

In this paper we ask which are the lowest possible moments
to show nonclassicality and systematically investigate whether
second-, third-, or fourth-order correlations are sufficient
to exclude LHV theories. We first show that second-order
inequalities cannot be violated at all because of the so-called
weak positivity [13]—a simple classical construction of a
probability reproducing all second-order correlations. Note
that the standard Bell inequalities [1] require experimental
verification of the dichotomy A2 = 1, which means, e.g.,
showing that 〈(A2 − 1)2〉 = 0 by measuring the corresponding
fourth-order correlator or applying binning (in which case the
correlator is obviously zero). Hence, operationally a standard
Bell test is of at least fourth order—not second, as it may appear
from the Bell inequalities [1] alone. We emphasize that binning
is useless, if the signal is masked by classical noise. The
proposed Bell-type tests in condensed matter based on second-
order correlations [14–16] require an additional assumption
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TABLE I. Summary of the feasibility of moment-based tests
of LHV theories depending on the conditions: (a) contextuality or
noncontextuality and (b) a special or arbitrary input state. The entries
answer the questions: Are correlations with moments up to the given
order not explicable by a joint positive probability?

Noncontextuality Yes Yes No
State independent No Yes No
Maximal moments LHV excluded?

Second No No No
Third Yes No No
Fourth Yes Yes Yes

of a dichotomous interpretation of the measurement results,
which is in general experimentally unverified and does not
allow entanglement to be identified unambiguously. Next we
will show that Bell-type tests for third moments with standard
projective measurements are not possible. Nevertheless, third
moments can violate noncontextuality but only for a positive
semidefinite correlation matrix and special states. Our main
result is to show that generally fourth-order correlators are
sufficient to violate state-independent noncontextuality and a
Bell-type inequality which can be violated by correlation of
position and momentum in a special entangled state. State-
independent noncontextuality can be violated by a fourth-
moment generalization of the Mermin-Peres square [17]. Our
results for the gradual possibilities of excluding LHV models
under different conditions are summarized in Table I.

Comparing to previous research, note that the CFRD
inequalities are the only known Bell-type inequalities scalable
with A → λA, B → μB, and so on for more observers.
Unfortunately, the original example for a violation involved
20th-order correlators and ten observers [11], but was later
reduced to sixth order and three observers [18,19] for
Greenberger-Horne-Zeilinger states [20]. On the other hand,
the CFRD inequality with fourth moments cannot be violated
at all, which has been shown for spins [21], quadratures
[22], generalized to eight settings and proved for separable
states [23], and finally proved for all states [19] (we show an
alternative proof in Appendix E).

The paper is organized as follows. We start with a general
description of tests of contextuality and locality. Then we
show that second moments are insufficient to violate locality
and noncontextuality. Next, we show that third moments are
enough only to show state-dependent contextuality. In the last
part we discuss fourth moments, which allow violation of
state-independent noncontextuality and locality. The violation
of locality is possible with moments of positions and momenta
(quadratures).

II. TEST OF LOCAL-HIDDEN-VARIABLE MODELS

Let us adopt the Bell framework, depicted in Fig. 1. Suppose
Alice, Bob, Charlie, etc. are separate observers that can
perform measurements on a possibly entangled state, which
is described by an initial density matrix ρ̂. Every observer
X = A,B,C, . . . is free to prepare one of several settings of its
own detector (α = 1,2, . . . ). For each setting, one can measure
multiple real-valued observables (numbered i = 1,2,3, . . . )

FIG. 1. The general test of local realism. Here we have four
observers Alice, Bob, Charlie, and David. Everybody is free to choose
between three different settings α, β, and γ and finally they can
measure three real, continuous outcomes, e.g., Aαi . The picture can be
generalized to arbitrary numbers of observers, settings, and outcomes.

so that the measurement of X̂αi gives a real number Xαi

The projection postulate gives the quantum prediction for
correlations, 〈O1 · · · On〉 = Trρ̂Ô1 · · · Ôn for commuting ob-
servables Ôk . The observables measured by different observers
and by one observer X̂αi for a given setting have to commute,
viz., [X̂αi,Ŷβj ] = [X̂αi,X̂αj ] = 0. The observables for one
observer but different settings, X̂αi and X̂βj for α �= β, may
be noncommuting but may also accidentally commute or
even be equal. A LHV model assumes the existence of a
joint positive-definite probability distribution of all possible
outcomes ρ({Xαi}) that reproduces quantum correlations for
a given setting. If the accidental equality between observables
for different settings, X̂αi = X̂βj , imposes the constraint Xαi ≡
Xβj in ρ, the LHV model is called noncontextual. A single
observer suffices to test such LHVs as noncontextuality is
anyway an experimentally unverifiable assumption—the ob-
server cannot measure simultaneously at two different settings.
In contrast to noncontextuality, the locality test must allow
contextuality: that even if X̂αi = X̂βj (α �= β) then Xαi �= Xβj

is still possible. The choices of the settings and measurements
are required to be fast enough to prevent any communication
between observers. Then ρ cannot be altered by the choice of
the observable. Noncontextual and local LHVs can be ruled
out by tests with discrete outcomes [1,8]. In moment-based
tests only a finite number of cross correlations are compared
with LHVs. Our aim is to find the lowest moments showing
nonclassical behavior of quantum correlations.

III. WEAK POSITIVITY

For a moment all observables, commuting or not, will be
denoted by X̂i . Let us recall the simple proof that first- and
second-order correlation functions can always be reproduced
classically [13]. To see this, consider a real symmetric
correlation matrix

Cij = 〈XiXj 〉 = Trρ̂{X̂i,X̂j }/2 (1)

with {X̂,Ŷ } = X̂Ŷ + Ŷ X̂ for arbitrary observables X̂i and den-
sity matrix ρ̂. Such a relation is consistent with simultaneously
measurable correlations. More generally, it holds even in the
noncontextual case, when observables from different settings
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commute. Only these elements of the matrix C are measurable;
for the rest (1) is only a definition. Our construction includes all
possible first-order averages 〈Xi〉 by setting one observable to
the identity or subtracting averages (Xi → Xi − 〈Xi〉). Since
Trρ̂Ŵ 2 � 0 for Ŵ = ∑

i λiX̂i with arbitrary real λi , we find
that the correlation matrix C is positive definite. Therefore
every correlation can be simulated by a classical Gaussian
distribution � ∝ exp(−∑

ij C−1
ijXiXj/2), with C−1 being the

matrix inverse of C. This is a LHV model reproducing all
measurable correlations. We recall that we do not assume
dichotomy X = ±1, which is equivalent to 〈(X2 − 1)2〉 = 0
and requires 〈X4〉. For simplicity, from now on we shall fix
〈Xi〉 = 0, redefining all quantities Xi → Xi − 〈Xi〉.

It is interesting to note that Tsirelson’s bound [24] can be
seen as a consequence of weak positivity. Taking observables
A1, A2, B1, and B2, we have

〈(
√

2A1 − B1 − B2)2〉 + 〈(
√

2A2 − B1 + B2)2〉 � 0 (2)

for the Gaussian distribution with the correlation matrix (1). It
is equivalent to

〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉
�

(〈
A2

1

〉 + 〈
A2

2

〉 + 〈
B2

1

〉 + 〈
B2

2

〉)/√
2. (3)

For A,B = ±1, the right hand side gives Tsirelson’s bound
2
√

2 which is at the same time the maximal quantum value
of the left-hand side. On the other hand, the upper classical
bound in this case is 2 [1], but it requires assuming dichotomy
or equivalently knowledge of higher moments.

IV. THIRD MOMENTS

Having learned that second moments do not show non-
classicality at all, we turn to third moments. If the matrix
C is strictly positive definite, all third-order correlations can
be explained by a positive probability as well (the proof is
in Appendix A). The problematic case is a semipositive-
definite C, with at least one 0 eigenvalue. One cannot
violate noncontextuality with an arbitrary state and third-order
correlations. To see this, let us take the completely random state
ρ̂ ∝ 1̂ and suppose that the correlation matrix (1) has a zero
eigenvalue for Ŵ = �kλkX̂k . Then 〈W 2〉 = 0 and TrŴ 2 = 0,
which gives Ŵ = 0. We can simply eliminate one of the
observables by the substitution X̂m = −�k �=mλkX̂k/λm using
the symmetrized order of the operators when noncommuting
products appear. Now the remaining correlation matrix Cij

with i,j �= m is positive definite and the proof in Appendix A
holds. If the correlation matrix has more zero eigenvalues,
we repeat the reasoning, until only nonzero eigenvalues
remain. Furthermore, third-order correlations alone cannot
show noncontextuality in a state-dependent way for up to four
observables, nor in any two-dimensional Hilbert space, nor
can they violate local realism (the proofs are in Appendixes
B and C). There exists, however, an example of violation
of state-dependent noncontextuality with five observables in
three-dimensional space (Appendix D).

Instead, here we show a simple example violating state-
dependent noncontextuality, based on the Greenberger-Horne-
Zeilinger (GHZ) idea [20]. We consider a three-qubit Hilbert
space with the eight basis states denoted |ε1 ε2 ε3〉 with

εα = ±. We have three sets of Pauli matrices σ̂
(α)
j , with

σ̂1 = |−〉〈+| + |+〉〈−| and σ̂2 = i|−〉〈+| − i|+〉〈−|, acting
only in the respective Hilbert space of qubit α. Now let us
take the six observables Âα = σ̂

(α)
1 , B̂α = Ĉσ̂

(α)
2 for α = 1,2,3

and Ĉ = σ̂
(1)
2 σ̂

(2)
2 σ̂

(3)
2 . All Â’s commute with each other;

similarly all B̂’s commute, and Âα commutes with B̂α . We
take ρ̂ = |GHZ〉〈GHZ| for the GHZ state

√
2|GHZ〉 = | + + +〉 + | − − −〉. (4)

Assuming noncontextuality, we have

〈(Aα + Bα)2〉 = Trρ̂(Âα + B̂α)2 = 0, (5)

which implies Aα = −Bα , so classically 〈A1A2A3〉 =
−〈B1B2B3〉. However,

〈A1A2A3〉 = Trρ̂Â1Â2Â3 = 1,
(6)〈B1B2B3〉 = Trρ̂B̂1B̂2B̂3 = 1,

in contradiction with the earlier statement and excluding
noncontextual LHVs. Hence, we have seen that the third-order
correlations may violate noncontextuality for specific states. It
should not be surprising that the test is based on violating an
equality, instead of an inequality, because third moments can
have arbitrary signs.

V. FOURTH-ORDER CORRELATIONS:
NONCONTEXTUALITY

To find a test of noncontextuality we now consider fourth
moments. Mermin and Peres [17] have shown a beautiful ex-
ample of state-independent violation of noncontextuality using
observables on the tensor product of two two-dimensional
Hilbert spaces HA ⊗ HB arranged in a square

M̂ij j = 1 j = 2 j = 3

i = 1 σ̂ A
1 σ̂ A

1 σ̂ B
1 σ̂ B

1

i = 2 −σ̂ A
1 σ̂ B

3 σ̂ A
2 σ̂ B

2 −σ̂ A
3 σ̂ B

1

i = 3 σ̂ B
3 σ̂ A

3 σ̂ B
3 σ̂ A

3

(7)

where the Pauli observables σ̂i are in each Hilbert space
({σ̂i ,σ̂j } = 2δij 1̂). Observables in each row and each col-
umn commute. We denote products in each column Ĉi =
M̂1iM̂2iM̂3i and row R̂i = M̂i1M̂i2M̂i3. We get Ĉi = −1̂ and
R̂i = 1̂. If M̂ij are replaced by classical variables Mij then
C1C2C3 = R1R2R3, in contradiction with the quantum result.

Now we assume that the M are not spin 1/2, but arbi-
trary operators, which can be grouped into a Mermin-Peres
square fulfilling the corresponding commutation relations
[M̂ij ,M̂ik] = [M̂ij ,M̂kj ] = 0 (operators in the same column
or row commute). We will show that in this example the
dichotomy test can be avoided by fourth-order correlations,
without other assumptions on the values Mij . To see this,
note that S ≡ �i(Ci − Ri) = det N where Nij = Mi+j,i−j

(counting modulo 3). Now, we note that (det N )2 = det(NT N )
and the eigenvalues λi of NT N are real and positive. Using
the Cauchy inequality we find that det(NT N ) = λ1λ2λ3 �
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(λ1 + λ2 + λ3)3/27 = (TrNT N )3/27. We get then

3
√

3|S| �

⎛
⎝∑

ij

M2
ij

⎞
⎠

3/2

� 3
∑
ij

|Mij |3, (8)

where we used the Hölder inequality in the last step. Now, we
take the average of the above equation, use |〈S〉| � 〈|S|〉, and
apply the Cauchy-Bunyakovsky-Schwarz inequality 〈|xy|〉 �
(〈x2〉〈y2〉)1/2 to x = Mij and y = M2

ij . We obtain finally an
inequality obeyed by all noncontextual theories,

|〈S〉| �
∑
ij

[〈
M2

ij

〉〈
M4

ij

〉/
3
]1/2

. (9)

The inequality involves maximally fourth-order correlations
and every correlation is measurable (corresponds to commut-
ing observables). One can check that if Mij correspond to (7)
then the left-hand side of (9) is 6 while the right-hand side of
(9) is 3

√
3, giving a contradiction. Hence, a violation of (9) is

possible, but it remains to be shown that systems with naturally
continuous variables are contextual by violating Eq. (9) or
other fourth-moment-based inequalities.

VI. FOURTH-ORDER CORRELATIONS: NONLOCALITY

A simple fourth-moment-based inequality testing local
realism has been considered by CFRD [11]:

〈A1B1 − A2B2〉2 + 〈A1B2 + A2B1〉2

�
〈(
A2

1 + A2
2

)(
B2

1 + B2
2

)〉
. (10)

Note that all averages involve only simultaneously measurable
quantities. This constitutes an inequality, which holds classi-
cally, involves only fourth-order averages, and is scalable with
respect to A and B. Unfortunately, (10) and its generalizations
[23] are not violated at all in quantum mechanics as shown in
[19]. We present an alternative proof in Appendix E.

Unfortunately a violable two-party fourth-order inequality
is much more complicated [13]. A different, but quadripartite,
inequality can be obtained by a slight modification of CFRD
inequalities [11]. It reads

|〈ABCD〉|2 � 〈|AB|2〉〈|CD|2〉 (11)

where A = A1 + iA2, etc., so that both sides, when ex-
panded, contain only simultaneously measurable correlations
(because |〈ABCD〉|2 = 〈ReABCD〉2 + 〈ImABCD〉2 is free
from products 〈A1A2 · · · 〉 and |A|2 = A2

1 + A2
2 on the right-

hand side) It follows from the generalized triangle inequality
|〈Z〉| � 〈|Z|〉 for Z = ABCD and the Cauchy-Bunyakovsky-
Schwarz inequality 〈XY 〉2 � 〈X2〉〈Y 2〉 for X = |AB| and
Y = |CD|. See more details in Appendix F.

Interestingly, the inequality (11) can be violated by
correlations of positions and momenta, Let us take standard
harmonic oscillator operators

√
2Â = X̂A + iP̂A with

[X̂A,P̂A] = i (� = 1) so A1 → X̂A/
√

2, A2 → P̂A/
√

2, and
[Â,Â†] = 1 and analogously for B, C, and D. In the Fock basis
Â|n〉A = √

n|n − 1〉A, etc. Now take a specific entangled state
in the product space of A, B, C, and D, |ψ〉 = �N

n�0zn|nnnn〉
with real zn (for simplicity) and check if (11) holds also
quantum mechanically. We find that 〈ψ |ÂB̂ĈD̂|ψ〉 =
�nn

2znzn−1 while 〈ψ |(Â†Â + ÂÂ†)(B̂†B̂ + B̂B̂†)|ψ〉 =

�nz
2
n(2n + 1)2, and similarly for C and D. Due to symmetry

between the oscillators, the inequality (11) is equivalent
to 〈ABCD〉 � 〈|AB|2〉, and the quantum mechanical
prediction reads �N

n=0n
2znzn−1 � �N

n=0z
2
n(n + 1/2)2. This is

equivalent to the positivity of the (N + 1) × (N + 1) matrix
M with entries Mnn = (n + 1/2)2 for n = 0,1, . . . ,N and
Mn,n+1 = Mn+1,n = −(n + 1)2/2 for n = 0,1, . . . ,N − 1,
and 0 otherwise. However, for N � 10 we get det M < 0
so it must have a negative eigenvalue. A numerical
check for N = 10 shows that, e.g., the state with {zn} =
{0.83,0.42,0.27,0.18,0.13, 0.09, 0.07, 0.05, 0.03, 0.02, 0.01}
violates (11). The generation of the highly entangled state
violation (11) will be difficult but possible because techniques
of generation of multipartite entangled optical states already
exist [25].

VII. CONCLUSIONS

We have proved that one cannot show nonclassicality by
violating inequalities containing only up to third-order correla-
tions, except state-dependent contextuality. Fourth-order cor-
relations are sufficient to violate locality and state-independent
noncontextuality but the corresponding inequalities are quite
complicated. A fourth-order quadripartite Bell-type inequality
(11) can be violated by fourth-order correlations of position
and momentum or quadratures for special entangled states.
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APPENDIX A: POSITIVE DEFINITE CORRELATIONS

Let us assume that the correlation matrix C from (1) is
strictly positive definite, having all eigenvalues positive. We
will prove that every third-order correlation can be explained
also by a positive probability. We also shift all first-order
averages to zero, Xi → Xi − 〈Xi〉. So far the distribution of
X was Gaussian and X were continuous, but in this case all
central third moments are zero. To allow for nonzero third
moments we have to change the probability. The simplest (but
not the only) way is to change the probability at particular
values of X to get a non-Gaussian distribution. We define
additional labels {ijkq}, i �= j �= k �= i (in this case 1 for
all possible permutations of ijk), {ijq±}, i �= j , {ijq±} �=
{jiq±} (here order matters), and {iq} with an auxiliary
parameter q ∈ {3, − 1, − 2}. The modified distribution reads

�(X) = �G(X) + λ−3
∑
L

∏
j

δ(Xj − Wj (L)),

(A1)

�G(X) = 1 − c/λ3

(2π )n/2(det C)1/2
e− ∑

ij C−1
ij XiXj /2,

where �G is the “old” Gaussian (renormalized) while the
second part is the sum over δ peaks at particular points
depending on the label L. Here c is the number of all labels
L and λ > 0 is some very large real parameter such that

022125-4



TESTING LOCALITY AND NONCONTEXTUALITY WITH . . . PHYSICAL REVIEW A 89, 022125 (2014)

c/λ3 < 1. The positions of the peaks are

Wi,j,k({ijkq}) = qλ〈XiXjXk〉1/3/
3
√

18,

Wi({ijq±}) = ±
√

2qQij /
3
√

18,

Wj ({ijq±}) = qQij /
3
√

18,

Qij = λ
3
√

4

⎡
⎣〈

X2
i Xj

〉 − ∑
k �=ij

〈XiXjXk〉
⎤
⎦

1/3

, (A2)

Wi({iq}) = qλ
3
√

18

[〈
X3

i

〉 − ∑
j �=i

〈
X2

jXi

〉
/2

]1/3

,

Wl({ijkq}) = Wl({ijq±}) = Wl({iq}) = 0, l �= ijk.

The cubic root is defined real for real negative arguments. Here
〈XiXjXk〉 are the desired third moments (the argument holds
even for noncommuting observables). Note that the special
choice of q results in unchanged averages 〈Xi〉 as 3 − 1 − 2 = 0
but nonzero third-order averages as 33 − 13 − 23 = 18. The
calculation of the third moments gives exactly the desired
values. Unfortunately, it will modify the correlation matrix C.
However, the correction is ∼1/λ. The modified correlation
matrix is then arbitrarily close to C at λ → ∞, so it must be
positive definite and we can find the new Gaussian part in
the form �G ∝ exp(−�ijC ′−1

ijXiXj/2), where the matrix C ′
gives the correct total second-order correlations.

The assignment (A2) is certainly not unique; one could
easily find a lot of different ones also reproducing correctly
third-order correlations. However, the bottom line is that
the proof works only if C has a positive signature. If some
eigenvalues of C are 0 (which occurs when a particular Xi

is in fact linearly dependent on the others) then C ′ may have
a negative eigenvalue for arbitrary λ and we cannot find any
Gaussian distribution, as shown in the example in Sec. IV.

APPENDIX B: NONCONTEXTUALITY IN SIMPLE CASES

Let us examine state-dependent noncontextuality with up
to four observables Âi , i = 1,2,3,4, with the outcomes Ai

or A,B,C,D. We look for a positive probability �({Ai})
that reproduces correctly all first, second, and third moments
calculated by quantum rules. We have the freedom to set
values of correlations of noncommuting products of observ-
ables because they are not measurable simultaneously. The
construction of the probability depends on the commutation
properties of the set {Âi} and is shown for various cases in
Table II. We denote ρ({Ai}) = Trρ̂�iδ(Ai − Âi) for every
subset of commuting Âi .

The only difficult case is with noncommuting pairs (Â1,Â2)
and (B̂1,B̂2) but this is equivalent to the test of local realism.
We will show in the general proof in Appendix C that this case
can be always (if we do not use fourth moments) explained
by a LHV model. Thus, we have shown that it is possible
to define positive probability distributions � that reproduces
all quantum first, second, and third moments of measurable
(commuting) combinations of up to four observables.

In two-dimensional Hilbert space the situation is some-
what simpler and we can find a classical construction for
an arbitrary number of observables (not limited to 4).

TABLE II. Construction of positive probabilities � for all cases
of up to four observables. Here the link − means the observables
commute (those not linked do not commute). Exceptions: � = 0 when
the denominator is zero.

Observables �(A,B,C,D)

A B C D ρ(A)ρ(B)ρ(C)ρ(D)

A − B C D ρ(A,B)ρ(C)ρ(D)

A D

/ \ ρ(A,B,C)ρ(D)
B − C

A D
ρ(A)ρ(B,C)ρ(D)

B − C

B − A − C D ρ(A,B)ρ(A,C)ρ(D)/ρ(A)

B − A − D

| ρ(A,B)ρ(A,C)ρ(A,D)/ρ2(A)
C

A − D

/ \ ρ(A,B,C)ρ(A,D)/ρ(A)
B − C

A − D

| × | ρ(A,B,C,D)
B − C

A − B − C − D ρ(A,B)ρ(B,C)ρ(C,D)/ρ(B)ρ(C)

A − B C − D ρ(A,B)ρ(C,D)

A

/ \
B − C ρ(A,B,C)ρ(B,C,D)/ρ(B,C)
\ /

D

A1 − B1

| | Appendix C
B2 − A2

The observables have the structure Â = a01̂ + �a · �̂σ , where
�̂σ = (σ̂1,σ̂2,σ̂3) with standard Pauli matrices σ̂j , satisfying
{σ̂j ,σ̂m} = 2δjm1̂. Observables Â and B̂ commute if and
only if �a ‖ �b. We can group all observables (their number
is arbitrary) parallel to the same direction, so that �aα ‖ �a,
�bβ ‖ �b, �cγ ‖ �c, . . . , where �a ∦ �b,�c, . . . , �b ∦ �c, . . . , etc. Then we
construct a LHV model defined by �({Aα},{Bβ},{Cγ }, . . . ) =
ρ({Aα})ρ({Bβ})ρ({Cγ }) · · · , where ρ({Aα}) = Trρ̂�jδ(Aα −
Âα) and similarly for the other sets. This means that all
(noncontextual) third moments for a two-level system are
reproduced by a classical probability.

On the other hand we will see in Appendix D an example
of the violation of state-dependent noncontextuality involving
a three-dimensional Hilbert space and five observables.

APPENDIX C: THIRD MOMENTS:
CONTEXTUAL LHV MODELS

We will present a general proof that third-order correlations
can be explained by a LHV model, if contextuality is allowed
and no assumption on higher-order moments or dichotomy
is made. As in Sec. II, we denote CXαj,Yβk = 〈XαjYβk〉 for
X,Y = A,B,C, . . . and α,β,j,k = 1,2, . . . . For a valid LHV
theory, C must be positive (semi)definite.
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1. Assumptions

The proof is based on two facts:
(a) CXαj,Xβk = 〈XαjXβk〉 is not measurable for α �= β

(even if accidentally X̂αj X̂βk = X̂βkX̂αj ) because α and β

correspond to two different settings of the same observer which
cannot be realized simultaneously. So it is a free parameter in
a LHV model.

(b) We can always redefine every observable within one
observer’s setting by a real linear transformation X̂αm →
�kλαkX̂αk as long as linear independence is preserved, because
all such observables commute with each other.

The proof involves a kind of Gauss elimination on a set of
linear equations [26].

2. Problem of zero eigenvalues

The first choice for C will be (1), which is positive semidefi-
nite. We shall see that this choice must be sometimes modified,
without affecting the measurable correlations. Suppose that
the correlation matrix C has N zero eigenvalues with linearly
independent zero eigenvectors

Wm =
X=A,B,...∑

α,k

λm
XαkXαk, m = 1, . . . ,N (C1)

with the property 〈W 2
m〉 = 0. This implies Trρ̂Ŵ 2

m = 0, which
gives

Wm = Ŵmρ̂ = 0, m = 1, . . . ,N . (C2)

The above set of linear equations can be modified as in the
usual algebra; we can multiply equations by nonzero numbers
and add up, as long as linear independence holds. The vectors
Wm span the kernel of the correlation matrix. We shall prove
that for a given observer X the above set of equations can be
written in the form

Xαk +
Y �=X∑
βj

λXαk
Yβj Yβj = 0, (C3)

where we sum over all observers different from X and all their
settings and observables plus equations not containing X. If
this is not possible then we shall prove that we can reduce
the kernel by at least one vector by modifying nonmeasurable
correlations in the correlation matrix, keeping its positivity.
By such successive reduction we will end up with (C3). For
the Bell case (A and B, α = 1,2) (C3) reduces either to trivial
single vectors Aα − λBα or a set

A1 = λ11B1 + λ12B2,
(C4)

A2 = λ21B1 + λ22B2

with invertible matrix λ. The original correlation matrix (1)
may lead us into trouble for some correlations (violation of
noncontextuality), which are anyway unobservable so we do
not need to bother in contextual LHV models. Therefore,
sometimes we have to modify it slightly to relax dangerous
constraints. The resulting LHV correlation matrix can be
different from (1) but only for nonmeasurable correlations.
We make use of the fact that quantum mechanics does not
permit measuring everything in one run of the experiment,
leaving more freedom for contextual LHV models.

3. Reduction of zero eigenvectors

We shall prove that all zero eigenvectors can be eliminated
except those in the form of (C3). Without loss of generality let
us take X = A. We write (C2) in the form∑

αk

λm
αkAαk + �A = 0, (C5)

where �A replaces all linear combinations of quantities mea-
sured by the other observers (B, C, D, . . .), e.g., �A can
be 2B11 − 3B11 + B21 − 5C13. By linear eliminations and
transformations within setting 1, there exists a form of (C5)
consisting of

A1k + �1 + �A = 0, k = 1,2, . . . , (C6)

with �1 not containing A1j terms, and other equations that do
not contain A1j at all. Suppose that at least one of (C6) contains
an A2j term, so in general (C6) has the form

A1k +
∑
m

λkmA2m + �1�2 + �A = 0, k = 1,2, . . . (C7)

with at least one λkm �= 0 and �1�2 denoting all terms not contain-
ing A1j and A2j . By linear eliminations and transformations
within settings 1 and 2 we arrive at

A1k + A2k + �1�2 + �A = 0, k = 1,2, . . . ,l,

A1k + �1�2 + �A = 0, k = l + 1,l + 2, . . . , (C8)

A2k + �1�2 + �A = 0, k = l + 1,l + 2, . . . ,

and other equations that do not contain A1j nor A2j at all (if we
have a single observable for each setting then we can omit the
index k). If l > 0 then we change 〈A11A21〉 → 〈A11A21〉 + ε

with ε > 0 in the correlation matrix C (or 〈A1A2〉 for single
observables). Then 〈W 2〉 = 2ε > 0, where W is the left-hand
side of the first line in (C8) for k = 1. Correlations involving
other kernel vectors remain unaffected as none of them
contains A11 nor A21. For sufficiently small but positive ε

the new correlation matrix C will be strictly positive in the
space spun by the old nonkernel vectors plus W . In this way
we reduce by 1 the dimension of the kernel. By repeating this
reasoning we kick out of the kernel all vectors on the left-hand
side of the first line of (C8). Once we are left with only the
two last lines of (C8) we proceed by induction.

Let us assume that, at some stage with a fixed α, the kernel
equations have the form

Aξk +
∑
m

λ
ξ

kmAαm + �1 · · · �α + �A = 0 (C9)

for all ξ < α, plus other equations not containing Aξ and Aαm.
Note that the set of possible k can be different for different ξ . If
all λ = 0 then we can proceed to the next induction step, taking
the next setting. Otherwise, let us denote by � the set of all ξ

with λ
ξ

k1 �= 0 for some k (we fix the other index to 1 without
loss of generality). By linear eliminations we find only one
such k for each ξ ∈ � so that λ

ξ

k1 = δk1. Now, we make a shift
of the nonmeasurable correlations 〈Aξ1Aα1〉 → 〈Aξ1Aα1〉 +
ε and 〈Aξ1Aη1〉 → 〈Aξ1Aη1〉 − 2ε for ξ,η ∈ � with ε > 0.
Denoting by Wξ , ξ ∈ �, the subsequent left-hand sides of
(C9) for k = 1, we have 〈WξWη〉 = 2εδξη. Correlations with
other kernel vectors remain zero as they contain neither Aξ1 nor

022125-6



TESTING LOCALITY AND NONCONTEXTUALITY WITH . . . PHYSICAL REVIEW A 89, 022125 (2014)

Aα1. For sufficiently small ε (every new ε is much smaller than
all previous ones), the correlation matrix C on old nonkernel
vectors plus Wξ is strictly positive, as in (C8). Hence, we kick
Wξ out of the kernel. By repeating this step for subsequent
m we get rid of all unwanted kernel vectors and can proceed
with the induction step. Then we repeat it for each observer,
to finally arrive at the desired form (C3).

4. Construction of third moments

Now, we define all third-order correlations, including
noncommuting observables. We divide all observables into
two families: Vj —appearing in (C3) and Ym—the rest. Now,

〈YmYnYp〉 =
∑

σ (mnp)

Trρ̂ŶmŶnŶp/6,

〈VjYmYn〉 = Trρ̂{V̂j ,{Ŷm,Ŷn}}/4,

〈VkVlYn〉 = Trρ̂(V̂j ŶnV̂k + V̂kŶnV̂j )/2, (C10)

〈VjVkVl〉 =
∑

σ (jmn)

Trρ̂V̂j V̂kV̂l/6,

where σ denotes all six permutations. The above definition
is consistent with projective measurements for all measurable
correlations.

We have to check if 〈WZZ′〉 = 0 for W given by an
arbitrary linear combination of left-hand sides of (C3) and
Z,Z′ = Vj ,Ym. If Z,Z′ = Ym,Yn it is clear because

Ŵ ρ̂ = 0. (C11)

If Z = Ym, Z′ = Vj , then

2〈WYmVj 〉 = Trρ̂(Ŵ ŶmV̂j + V̂j ŶmŴ ) = 0 (C12)

again because of (C11). Finally, we need to consider Z = Vj ,
Z′ = Vk . Because of (C11), we get

6〈WVjVk〉 = Trρ̂(V̂j Ŵ V̂k + V̂kŴ V̂j ) . (C13)

Without loss of generality we need to consider only two cases.
The first one is Vj = Aj , Vk = Bk . If W does not contain A or
B then we can move it to the left or right and (C13) vanishes
due to (C11). Now suppose W contains Am. By virtue of (C3)
we can write

W = Am +
∑

n

λnBn + �A�B, (C14)

where �A�B denotes all terms not containing A and B. Moving
Am and �nλnBn + �A�B in opposite directions in (C13), it can
be transformed into

Trρ̂(Âj Ŵ B̂k + B̂kŴ Âj ) = Trρ̂(Âj B̂kÂm + ÂmB̂kÂj )

+ Trρ̂

[(∑
n

λnB̂n + ˆ�A�B
)

Âj B̂k

+ B̂kÂj

(∑
n

λnB̂n + ˆ�A�B
)]

= Trρ̂(Âj B̂kŴ + Ŵ B̂kÂj ),

where we used the commutation rule Âj B̂k = B̂kÂj . The last
expression vanishes due to (C11). If W contains Bm, we
proceed analogously.

The last case is Vj = Aj , Vk = Ak . If W does not contain
any A terms then we can move W to the left or right and (C13)
vanishes due to (C11). The remaining cases, due to (C3), have
the form W = Am + �A, and (C13) reads

Trρ̂(Âj Ŵ Âk + ÂkŴ Âj ) = Trρ̂(Âj ÂmÂk + ÂkÂmÂj )

+Trρ̂( �ÂÂj Âk + ÂkÂj �Â).

(C15)

Now we remember that (C3) must contain also W ′ = Ak − �A′
so Âkρ̂ = �Â′ρ̂, which gives

Trρ̂(Âj ÂmÂk + ÂkÂmÂj ) = Trρ̂(Âj Âm �Â′ + �Â′ÂmÂj )

= Trρ̂( �Â′Âj Âm + ÂmÂj �Â′)

= Trρ̂(ÂkÂj Âm + ÂmÂj Âk),

(C16)

so (C15) reads Trρ̂(Ŵ Âj Âk + ÂkÂj Ŵ ), which vanishes due
to (C11). We see that correlations containing arbitrary combi-
nations of left-hand sides of (C3) vanish. Now, we can simply
eliminate one observable from each kernel equation (C3),
�kλkZk = 0, by the substitution Zm = −�k �=mλkZk/λm, so
that only Zk , k = 1, . . . ,l remain as independent observables.
Hence, the correlation matrix C is strictly positive (the kernel
is null) and we construct the final LHV model reproducing all
measurable quantum first-, second-, and third-order correla-
tions as in Appendix A. The third-order correlations involving
substituted observables are reproduced by virtue of the just
shown property of (C10). This completes the proof.

APPENDIX D: VIOLATION OF STATE-DEPENDENT
NONCONTEXTUALITY WITH THIRD MOMENTS

There exists a third-moment-based state-dependent ex-
ample violating noncontextuality with five observables in
a three-dimensional Hilbert space, which we will construct
now. Let us take observables Âα , for α = 1,2,3,4,5. Below
all summations are over the set {1,2,3,4,5} and indices
are counted modulo 5, α + 5μ ≡ α with integer μ. We
assume that ÂαÂα+2 = Âα+2Âα but ÂαÂα+1 �= Âα+1Âα , so
there are five commuting pairs and five noncommuting pairs.
Suppose that an experimentalist measures

S =
〈(∑

α

Aα cos
4πα

5

)2〉
+

〈(∑
α

Aα sin
4πα

5

)2〉

+
〈(∑

α

Aα

)2〉
cos

π

5
=

∑
α

〈
A2

α

〉
[1 + cos(π/5)]

+
∑

α

2〈AαAα+2〉[cos(π/5) + cos(2π/5)]. (D1)

Let us denote Fourier operators by Â(q) = �αÂαe2πiαq/5.
Since Âα = Â†

α , we have Â(0) = Â†(0), Â(−1) = Â(4) =
Â†(1), and Â(−2) = Â(3) = Â†(2). Similarly, for outcomes
A(0) = A∗(0), A(−1) = A(4) = A∗(1), and A(−2) = A(3) =
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A∗(2) (there are either five real random variables or one real
and two complex). We can write (D1) in the equivalent form

S = 〈|A(2)|2〉 + 〈[A(0)]2〉 cos(π/5). (D2)

If S = 0 then A(0) = A(2) = 0. Let us further take

Q = 25
∑

α

〈
A3

α

〉 =
q+p+r≡0∑

q,p,r

〈A(q)A(p)A(r)〉. (D3)

Each term of the expansion of the right-hand side must contain
A(±2) or A(0) because ±1 ± 1 ± 1 �≡ 0 so S = 0 implies
Q = 0.

Denoting the commutator by [X̂,Ŷ ] = X̂Ŷ − Ŷ X̂, we have

0 = 5
∑

α

[Âα,Âα+2]e2πiαq/5

=
∑

p

[Â(q − p),Â(p)]e−4πip/5

=
∑

p

[Â(p + q),Â†(p)]e4πip/5 . (D4)

By inverse Fourier transform, satisfying the above relations
for q = 1, . . . ,5 is equivalent to [Âα,Âα+2] = 0. In fact, there
are only three independent equations in (D4) for q = 0,1,2
because q = 3,4 can be obtained from Hermitian conjugation
of q = 2,1 with some factor. We obtain

[Â(1),Â†(1)] sin
π

5
− [Â(2),Â†(2)] sin

2π

5
= 0,

[Â(1),Â(0)] sin
2π

5
− [Â(2),Â†(1)] sin

π

5
= 0, (D5)

[Â(2),Â(0)] sin
π

5
− [Â†(2),Â†(1)] sin

2π

5
= 0.

In the basis |0〉,|1〉,|2〉, we take

Â(0) = a

⎛
⎜⎝

0 0 0

0 1 0

0 0 1

⎞
⎟⎠ , Â(2) = b

⎛
⎜⎝

0 0 0

0 1 i

0 i −1

⎞
⎟⎠ ,

Â(1) = c

⎛
⎜⎝

0 1 i

1 0 0

i 0 0

⎞
⎟⎠ , (D6)

with real a and complex b,c. We have [Â(0),Â(2)] =
Â(1)Â(2) = Â(2)Â(1) = 0, [Â(1),Â†(1)] = 2|c|2B̂,
[Â(2),Â†(2)] = 4|b|2B̂, [Â(1),Â(0)] = acĈ, and
[Â(2),Â†(1)] = −2bc∗Ĉ, where

B̂ =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠ , Ĉ =

⎛
⎜⎝

0 1 i

−1 0 0

−i 0 0

⎞
⎟⎠ . (D7)

To satisfy (D5), we need |c|2 = 4|b|2 cos(π/5) and bc∗ =
−ac cos(π/5), satisfied by b = 1, c = 2

√
cos(π/5), and

a = − 1/ cos(π/5).

Assuming noncontextuality, the quantum mechanical ex-
pectation for (D1) reads

S =
∑

α

Trρ̂Â2
α[1 + cos(π/5)]

+
∑

α

2Trρ̂ÂαÂα+2[cos(π/5) + cos(2π/5)]

= Trρ̂[Â†(2)Â(2) + Â(2)Â†(2) + 2Â2(0) cos(π/5)]/2,

(D8)

and for (D3),

Q = 25
∑

α

Trρ̂Â3
α =

q+p+r≡0∑
q,p,r

Trρ̂Â(q)Â(p)Â(r). (D9)

For ρ̂ = |0〉〈0|, we have Â(0, ± 2)ρ̂ = ρ̂Â(0, ± 2) = 0, so
S = 0. By explicit calculation we find

Q = 〈0|Â(1)Â(0)Â†(1)|0〉 + 〈0|Â†(1)Â(0)Â(1)|0〉
+ 〈0|Â(1)Â†(2)Â(1)|0〉 + 〈0|Â†(1)Â(2)Â†(1)|0〉

= 4a|c|2 + 8Re(b∗c2) = 8(
√

5 − 1) � 9.9, (D10)

in clear contradiction to the classical prediction Q = 0.

APPENDIX E: NO-GO THEOREM ON TWO-PARTY
CFRD INEQUALITIES

Simple fourth-order CFRD-type inequalities can be con-
structed for two observers A and B, with up to eight settings
(and a single real outcome for each setting) [11,23], A

r/i
α ,B

r/i
α

with α = 0,1,2,3, and read

|〈A0B
†
0 + A1B

†
1 + A2B

†
2 + A3B

†
3〉|2

+|〈A0B1 − A1B0 + A
†
2B

†
3 − A

†
3B

†
2〉|2

+|〈A0B2 − A2B0 + A
†
3B

†
1 − A

†
1B

†
3〉|2

+|〈A0B3 − A3B0 + A
†
1B

†
2 − A

†
2B

†
1〉|2

�
∑
αβ

〈(A†
αAα + A†

αAα)(B†
βBβ + B

†
βBβ)〉/4, (E1)

where we have denoted C = Cr + iCi , C = Aα,Bα . The
notation is the same in the classical and quantum cases exceptˆ
and † → ∗. We use the complex form only to save space but all
the inequalities can be expanded into purely real terms [23].
The inequality reduces to (10) if we leave only Ar

1, Ar
2, Br

1 , and
Br

2 , while other observables are zero. Classically, (E1) follows
from the inequality |〈z〉|2 � 〈|z|2〉 applied to each term on the
left-hand side and summed up. Surprisingly, the inequality
is not violated at all in quantum mechanics, which has been
proved in [19]. Below we present an alternative proof.

It suffices to prove (E1) for pure states ρ̂ = |ψ〉〈ψ |. For
mixed states ρ̂ = �kpk|ψ〉〈ψ |, pk � 0, and �kpk = 1. We
apply the triangle inequality |�kpkzk| � �kpk|zk| and the
Jensen inequality (�kpk|zk|)2 � �kpk|zk|2, where zk is the
complex correlator in each of the four terms on the left-hand
side of (E1) taken for a pure state |ψk〉. If (E1) is valid for each
|ψk〉 then it holds for the mixture, too.
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Let us focus then on pure states. Note that the sum of the
last three terms on the left-hand side of (E1) can be written as

∑
αβ

(〈AαBβ〉〈A†
αB

†
β〉 − 〈AαBβ〉〈A†

βB†
α〉)

+
∑
αβγ δ

εαβγ δ(〈AαBβ〉〈Aγ Bδ〉 + 〈A†
αB

†
β〉〈A†

γ B
†
δ 〉)/2,

(E2)

using the completely antisymmetric tensor ε with ε0123 = 1.
Therefore the whole inequality is invariant under SU(4)
transformations of Aα and Bβ treated as components of
four-dimensional vectors (it is straightforward to verify the
invariance of other parts of the inequality). We recall that
these external transformations do not interfere with the internal
Hilbert spaces HA,B .

Let us number the four complex correlators inside the
moduli on the left-hand side of (E1) by 0,1,2,3, respectively
(e.g., 0 is the correlator �α〈AαB†

α〉). We want to transform (E1)
to a form with a single real correlator 0 while 1, 2, and 3 vanish.
Let us begin with a transformation Cα → eiφαCα , C = A,B,
with �αφα = 0. Note that A0B1 − A1B0 + A

†
2B

†
3 − A

†
3B

†
2 just

gets the phase factor ei(φ0+φ1), so by tuning φα we can always
make the correlators 1, 2, and 3 real. Making now a real
rotation in 123 space we can leave only the real correlator
3 while 1 and 2 vanish. Still, the correlator 0 can also have
an unwanted imaginary component, because 0 is invariant
under SU(4) transformations. To get rid of it, we have to
apply a different transformation A0 → A0, A1 → A1, A2 →
A

†
2, A3 → A

†
3, B0 → −B

†
1, B1 → B

†
0, B2 → −B3, B3 → B2,

which gives

A0B1 − A1B0 + A
†
2B

†
3 − A

†
3B

†
2

→ A0B
†
0 + A1B

†
1 + A2B

†
2 + A3B

†
3,

A0B2 − A2B0 + A
†
3B

†
1 − A

†
1B

†
3

→ −A0B3 + A3B0 − A
†
1B

†
2 + A

†
2B

†
1,

A0B3 − A3B0 + A
†
1B

†
2 − A

†
2B

†
1

→ A0B2 − A2B0 + A
†
3B

†
1 − A

†
1B

†
3,

A0B
†
0 + A1B

†
1 + A2B

†
2 + A3B

†
3

→ −A0B1 + A1B0 − A
†
2B

†
3 + A

†
3B

†
2. (E3)

It is clear that the inequality (E1) remains unchanged [we can
change signs in the second and fourth parts of (E3)]. Now
the correlator 0 vanishes because it is moved to −1 and 1
is moved to 0 (2 → −3, 3 → 2). Applying again an SU(4)
transformation, we can get correlator 1 real while 2 and 3
vanish and 0 remains null because it is invariant under SU(4).
Applying again (E3) we get only a single real term in 0. In this
way, the left-hand side of (E1) reads

(
Re

∑
α

〈AαB†
α〉

)2

. (E4)

We apply the triangle inequality∣∣∣∣∣
q=r,i∑

α

〈
Aq

αBq
α

〉∣∣∣∣∣ �
q=r,i∑

α

∣∣〈Aq
αBq

α

〉∣∣. (E5)

Note that |〈Aq
αB

q
α 〉| � 〈|Aq

α||Bq
α |〉, where |X| is obtained by

reversing the signs of all negative eigenvalues of X (in the
eigenbasis). To prove (10) we have to show that(

q=r,i∑
α

〈∣∣Aq
α

∣∣∣∣Bq
α

∣∣〉)2

�
q,p=r,i∑

αβ

〈∣∣Aq
α

∣∣2∣∣Bp

β

∣∣2〉
. (E6)

We decompose |ψ〉 and arbitrary operators Âx and B̂x in the
basis |kAiB〉 of the joint Hilbert space HA ⊗ HB ,

|ψ〉 =
∑
ki

ψki |kAiB〉, Âx =
∑
kli

Ax
kl|kAiB〉〈lAiB |,

B̂x =
∑
kij

Bx
ij |kAiB〉〈kAjB |. (E7)

The normalization reads �ki |ψki |2 = 1. Let us define �̂ =
�kiψki |k〉〈i|, âx = �klAkl|k〉〈l|, and b̂x = �ijBij |j 〉〈i|. Now
the normalization reads tr �̂†�̂ = 1. One can check the
identity 〈ψ |ÂxB̂x |ψ〉 = tr �̂†âx�̂b̂x . We stress that âx and
b̂x are no longer operators in HA ⊗ HB , but in HA and HB ,
respectively, while �̂ is a linear transformation from HB to
HA, which need not be represented by a Hermitian or even a
square matrix. We note that such a manipulation is possible
only for two observers. By taking suitable bases, we could even
make �̂ diagonal, real, and positive, analogously to a Schmidt
decomposition, but it is not necessary. Now (E6) reads(

q=r,i∑
α

tr �̂†∣∣âq
α

∣∣�̂∣∣b̂q
α

∣∣)2

�
q,p=r,i∑

αβ

tr �̂†∣∣âq
α

∣∣2
�̂

∣∣b̂p

β

∣∣2
. (E8)

To prove (E8) we need the Lieb concavity theorem [27] which
states that for a fixed but arbitrary �̂ and s ∈ [0,1] the trace
class function f (F̂ ,Ĝ) = tr �̂†F̂ s�̂Ĝ1−s is jointly concave,
which means that

λf (F̂ ,Ĝ) + (1 − λ)f (F̂ ′,Ĝ′)

� f (λF̂ + (1 − λ)F̂ ′,λĜ + (1 − λ)Ĝ′) (E9)

for λ ∈ [0,1] and arbitrary Hermitian semipositive opera-
tors F̂ ,F̂ ′, Ĝ,Ĝ′. By induction (E9) generalizes straightfor-
wardly to

∑
α

λαf (F̂α,Ĝα) � f

⎛
⎝∑

α

λαF̂α,
∑

β

λβĜα

⎞
⎠ (E10)

for λα � 0 and �αλα = 1 and arbitrary semipositive operators
F̂α and Ĝα . We apply (E10) for s = 1/2, λq

α = 1/8, Fq
α = |aq

α |2,
and G

q
α = |bq

α|2 to get

q=r,i∑
α

tr �̂†∣∣âq
α

∣∣�̂∣∣b̂q
α

∣∣

� tr �̂†

(
q=r,i∑

α

∣∣âq
α

∣∣2

)1/2

�̂

⎛
⎝p=r,i∑

β

∣∣b̂p

β

∣∣2

⎞
⎠

1/2

. (E11)
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Finally we use the operator Cauchy-Bunyakovsky-Schwarz
inequality | tr ĉd̂|2 � tr ĉĉ† tr d̂ d̂† for ĉ = �̂† and

d̂ =
(

q=r,i∑
α

∣∣âq
α

∣∣2

)1/2

�̂

⎛
⎝p=r,i∑

β

∣∣b̂p

β

∣∣2

⎞
⎠

1/2

, (E12)

which completes the proof. It is impossible to generalize CFRD
inequalities to more observables [23].

APPENDIX F: FOUR-PARTY CFRD INEQUALITIES

For a complex random variable Z we have a generalized
triangle (in the complex plane) inequality |〈Z〉| � 〈|Z|〉. Now,
for complex random variables A,B,C,D we have

|〈ABC〉|2 � 〈|ABC|〉2 � 〈|AB|2〉〈|C|2〉 (F1)

and

|〈ABCD〉|2 � 〈|ABCD|〉2 � 〈|AB|2〉〈|CD|2〉, (F2)

where we use the Cauchy-Bunyakovsky-Schwarz inequality
in the last step. Complex variables can be constructed out of
real ones, A = A1 + iA2, etc., where A1 and A2 are real. Both
sides of the inequalities can be expanded in real variables, in
such a way that no average contains simultaneously A1 and
A2. In particular,

〈|AB|2〉 = 〈
A2

1B
2
1

〉 + 〈
A2

1B
2
2

〉 + 〈
A2

2B
2
1

〉 + 〈
A2

2B
2
2

〉
,

〈|C|2〉 = 〈
C2

1

〉 + 〈
C2

2

〉
, (F3)

while

|〈ABCD〉|2 = 〈ABCD〉∗〈ABCD〉
= 〈Re ABCD〉2 + 〈Im ABCD〉2, (F4)

where

〈Re ABCD〉 = 〈A1B1C1D1〉 − 〈A1B1C2D2〉
− 〈A2B2C1D1〉 + 〈A2B2C2D2〉
− 〈A1B2C1D2〉 − 〈A1B2C2D1〉
− 〈A2B1C1D2〉 − 〈A2B1C2D1〉 (F5)

and

〈Im ABCD〉 = 〈A1B1C1D2〉 + 〈A1B1C2D1〉
+ 〈A1B2C1D1〉 + 〈A2B1C1D1〉
− 〈A1B2C2D2〉 − 〈A2B1C2D2〉
− 〈A2B2C1D2〉 − 〈A2B2C2D1〉. (F6)

As quantum counterexamples, let us take spin observ-
ables σ1 = |+〉〈−| + |−〉〈+| and σ2 = i|−〉〈+| − i|+〉〈−|.
Now A1 = σA

1 and A2 = σA
2 so that A = A1 + iA2 = σA

+ =
2|+〉〈−|, etc. Taking Greenberger-Horne-Zeilinger states

√
2|ψ〉 = | + ++〉 + | − −−〉,

√
2|ψ〉 = | + + + +〉 + | − − − −〉,

we get on the left-hand side of (F1) 16 while the right-hand
side is equal to 8, and on the left-hand side of (F2) 64 while
the right-hand side is equal to 16. So in both cases they are
violated.

We can test the inequalities also by position and momentum
measurement. Let us take

√
2A = XA + iPA with [XA,PA] =

i (� = 1) so A1 = XA/
√

2, A2 = PA/
√

2, and [A,A†] = 1,
and analogously for B, C, and D. In the Fock basis A|n〉A =√

n|n − 1〉A and so on. Now we take a generic entangled state

|ψ〉 =
∑
n�0

zn|nnnn〉

with real zn (for simplicity) and check if (F2) holds. Note that
〈ABCD〉 = �nn

2znzn−1 while

〈|AB|2〉 = 〈|CD|2〉 = 〈(AA† + A†A)(BB† + B†B)〉/4

=
∑

n

z2
n(n + 1/2)2. (F7)

In this case, if (F2) holds then also 〈ABCD〉 � 〈|AB|2〉 holds,
which yields ∑

n

n2znzn−1 �
∑

n

z2
n(n + 1/2)2. (F8)

This is equivalent to the positivity of the (N + 1) × (N + 1)
matrix M with entries Mnn = (n + 1/2)2 for n = 0,1, . . . ,N

and Mn,n+1 = Mn+1,n = −(n + 1)2/2 for n = 0,1, . . . ,N −
1, and 0 otherwise. However, for N = 10 we get 222 det M =
−21 772 303 951 061 875 so it must have a negative eigen-
value. The numerical check shows that the minimal eigenvalue
of M is λmin = −0.002 879 31 while the normalized coeffi-
cients zn read (z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10)=(0.828 979,
0.419 264, 0.265 03, 0.181 928, 0.129 563, 0.093 487 9,
0.067 152 3, 0.047 126 4, 0.031 430 2, 0.018 836 4,
0.008 542 37) which violates (F2). Note that for larger N

one can get a smaller λmin, e.g. −0.093 for N = 3000.
Taking an analogous state

|ψ〉 =
∑

n

zn|nnn〉, (F9)

unfortunately one cannot violate (F1) which reads in this case(∑
n

znzn−1n
3/2

)2

�
∑

n

z2
n(n + 1/2)2

∑
n

z2
n(n + 1/2).

(F10)

One can see it from the Minkowski inequality(∑
n

xnyn

)
�

∑
n

x2
n

∑
n

y2
n , (F11)

taking xn = zn−1
√

n − 1/2 and yn =
√

n3/(n − 1/2) for
n = 1,2, . . . . Note also that n3/(n − 1/2) � (n + 1/2)2

because n3 � (n − 1/2)(n + 1/2)2 = (n2 − 1/4)(n + 1/2) =
n2 − n/4 + n2/2 − 1/8, which is true due to the fact that
n2/2 − n/4 − 1/8 � 0 for n � 1.

Interestingly, in the case of the tri- and quadripartite CFRD
inequalities, the Lieb theorem, used in Appendix E for two
parties, does not prevent the violation of a classical inequality,
even in the fourth-moment version. However, the violating
state in the position-momentum space is quite complicated, so
an open question remains whether any simpler fourth-order
inequality or simpler violating state exists.
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