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Abstract. Performance monitoring tasks are suitable for investigating aging-related decline in executive functions. However,
little is known about performance monitoring in premature pathological aging and mild cognitive impairment (MCI). This study
recorded the error-related negativity (ERN) and the correct-related negativity (CRN) as indices of performance monitoring and
compared these responses in older adults with MCI to the ones of younger and older adult controls. No differences in either ERN
or CRN were found between younger and older adult controls. Compared to both control groups, we observed a more negatively
pronounced CRN in MCI subjects. Only in this group did the amplitude of the CRN not differ from the one of the ERN. In general,
larger differences between both components (i.e., ERN > CRN) were associated with better performances in cognitive tests
requiring inhibition and executive control. These results indicate that electrophysiological correlates of performance monitoring
(ERN and CRN) are differentially affected by aging and MCI.
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INTRODUCTION

Normal aging is accompanied by cognitive and neu-
ral changes. Several cross-sectional and longitudinal
studies report not only a significant shrinkage of the
human brain, especially in prefrontal regions [1, 2],
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but also a related decline in executive functions with
increasing age [3–7]. Age-related decline in executive
functions can be measured, for example, by tests of
set shifting [8, 9] and verbal fluency [10, 11] as well
as by reaction time (RT) tasks with response conflicts
[12]. A decline in executive functions might medi-
ate age-related changes in other cognitive variables,
particularly in memory functions [13–16].

Mild cognitive impairment (MCI) is a syndrome
which might indicate early pathological aging. It is
associated with deterioration in at least one cognitive
domain [17–19] and with neuropathological abnor-
malities [20, 21]. MCI subjects do not yet fulfill the
criteria of dementia but are at high risk of developing
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neuropathology later in life [18]. Different etiological
components may promote MCI, which is consequently
heterogeneous in its clinical manifestations. Possible
driving factors of MCI include neurodegenerative dis-
orders such as Alzheimer’s disease (AD), vascular
dementia, traumatic brain injuries, metabolic dysreg-
ulation, and psychiatric problems [19, 22]. Given
this heterogeneity of causes, there is still an ongoing
debate about the meaningfulness of MCI as a clinical
syndrome per se. So far, no consensus about MCI diag-
nostic criteria has been achieved. Based on previous
research from various groups [23–29], the US-National
Institute on Aging and the Alzheimer’s Association
has recently proposed research criteria for the particu-
lar MCI subtype, which is suspected as an early stage
of AD [30, 31]. These criteria incorporate biomark-
ers in cerebrospinal fluid such as amyloid-� and tau,
positron emission tomography with fluodeoxyglucose
(FDG-PET), and also structural magnetic resonance
imaging (MRI). However, these biomarkers (i) involve
high costs or invasive methods, (ii) are not suitable
for general clinical practice (see also [32]), and (iii)
still lack the benefit of providing clear diagnostic
cutoff values to discriminate between normal aging,
MCI due to premature pathological aging, preclinical
stages of AD, and MCI due to other causes. Further
validation of the proposed MCI criteria and the devel-
opment of additional non-invasive diagnostic methods
are still needed. Evoked potentials may indicate defi-
cient executive functions and therefore may offer one
such method.

Performance monitoring includes error detection
and error compensation (i.e., error correction) and is
one aspect of executive control that is necessary to
master the wide array of daily tasks. Dysfunctional per-
formance monitoring potentially leads to inappropriate
adjustments of subsequent actions and to behavioral
problems [12]. Errors in choice RT tasks are reflected in
the “error-related negativity” or error negativity (ERN:
[33]; Ne: [34]) in the electroencephalogram (EEG).
The ERN is a component of the event-related brain
potential (ERP) starting around the onset of the erro-
neous response, peaking within 100 ms and showing
a fronto-central negativity [33–38]. Its generator has
consistently been localized in the medial frontal cor-
tex, more specifically in the anterior cingulate cortex
(including the anterior midcingulate cortex or aMCC)
which is postulated to be strongly involved in both
performance and/or conflict monitoring and subse-
quent performance adjustment [39–43]. The ERN is
considered to be an electrophysiological marker of
error detection, reflecting discrepancies between the

actual (erroneous) and the required (correct) response
[34, 44, 45].

A second but smaller medial-frontal negativity
related to response monitoring can also be elicited
after correct responses [35, 46, 47]. Unlike the ERN,
which is most likely to be observed after premature
responses, so-called “slips” [41, 45], Coles et al. [44]
suggested that the correct-related negativity (CRN) is
most likely to occur in cases of response uncertainty
or might reflect partial error processing during cor-
rect responses (see also [45, 48, 49]). In contrast to
the ERN, the CRN presumably plays a more general
role in performance monitoring and in the initiation of
future performance adaptation [35, 50]. Both perfor-
mance monitoring and adaptation have been shown to
be more difficult with increasing age [51, 52].

Several studies reported reduced ERN amplitudes
in healthy older compared to younger adults [48, 51,
53–57] and older adults with AD or Parkinson’s disease
[58–60]. However, others did not find this age-related
decrease in ERN amplitude [61–64]. The CRN has
been investigated in only a few studies with regard
to aging and dementia. These studies have found
inconsistent results: The CRN was increased [55, 61],
decreased [58], or unaffected in aged compared to
young participants [53]. In AD patients, the CRN was
either unaffected [59] or reduced [58]. Furthermore,
Mathalon et al. [58] found no difference between ERN
and CRN in AD patients although the typical pattern of
a more negative ERN amplitude compared to the CRN
was observed in younger and older controls without
dementia.

The impact of aging and dementia on performance
monitoring is unclear in the current literature. Both
ERN and CRN might serve as additional psychophys-
iological indices to investigate the effects of healthy
compared to early pathological aging on performance
monitoring [65, 66]. In the absence of other studies
investigating the ERN and CRN in MCI, we measured
electrophysiological ERPs on correct and incorrect tri-
als (i.e., CRN and ERN) in an adapted version of the
Eriksen flanker paradigm [67] and analyzed associa-
tions of these ERPs with the neuropsychological test
performance of younger adults, older adults, and MCI
subjects.

Based on previous findings, which indicated reduced
behavioral performance and reduced differentiation
between electrophysiological correlates of perfor-
mance monitoring following erroneous and correct
trials (i.e., between ERN and CRN, respectively) in AD
patients [58], we expected that (1) MCI subjects show
worse behavioral performance (RT and error rates) in
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the Flanker task and a reduced Error-Correct differ-
ence (i.e., reduced ERN or enhanced CRN amplitudes
or both) compared to older adult controls. (2) We fur-
ther expected RT slowing in the older compared to
the younger control group. However, since participants
were thoroughly cognitively examined and MCI was
excluded from the older control group (which was not
exactly the case in most of the previous studies [36, 51,
53–57]), we expected preserved error detection (i.e.,
unaltered ERN components) in healthy older controls
(cf.[61, 64]). We further explored possible variations of
the CRN with normal aging. (3) We hypothesized that
smaller Error-Correct difference waveforms are asso-
ciated with worse performance in neuropsychological
tests of executive function. (4) Finally, we expected
that the ERN and CRN show fronto-central maxima (at
electrodes Fz, FCz, and Cz) and that the CRN shows a
more frontal orientation compared to the ERN [55].

MATERIALS AND METHODS

Participants

ERP data were analyzed from three different groups:
(1) 14 older adults aged 60–88 years (5 males, 9
females) with MCI (12 cases of amnestic MCI and
2 cases of nonamnestic MCI) according to its clini-
cal manifestations [17–19]; (2) 16 healthy older adults
aged 63–78 years (7 males, 9 females); and (3) 16
younger adults aged 20–26 years (students; 7 males,
9 females). All participants had normal or corrected to
normal vision, and all participants but one older adult
were right-handed according to the Edinburgh Hand-
edness Inventory [68]. Groups did not differ in years
of education (F(2,43) = 1.34, p = 0.27) or distribution
of gender (�2

(2) = 0.26, p = 0.88). Healthy older con-
trols and older adults with MCI had a comparable age
range (t(28) = −1.38, p = 0.36). Group characteristics
are summarized in Table 1.

Participants were recruited at the University of Kon-
stanz, Germany, during informational events in local
senior centers and with the help of flyers and adver-
tisement in local newspapers. The ethics committee of
the University of Konstanz, Germany, approved this
study. Written informed consent was obtained prior to
study participation.

Controls
In a structured interview, all subjects were screened

for medical conditions. All interviews were carried
out by trained psychologists. Psychiatric illnesses

were further assessed using the Mini International
Neuropsychiatric Interview (German version 5.0.0
according to DSM-IV [69]). Exclusion criteria for con-
trols included: lack of fluency in spoken or written
German, significant memory complaints [70, 71], MCI
[17–19], dementia according to both the NINCDS-
ADRDA [72] and DSM-IV-TR criteria [73], a history
of other significant neurological disorders, current psy-
chiatric disorders, substance abuse or dependency, or
antidementia or psychiatric medication.

MCI subjects
All MCI subjects affirmed that they have mem-

ory complaints (according to [61]) and fulfilled the
clinical MCI criteria [17–19]. The exclusion criteria
used for the MCI subjects were the same as for the
control groups with, of course, the exception of mem-
ory complaints, MCI, and antidementia medication.
The latter was permitted when the medication dosage
had remained constant for at least three months. Pos-
sible depressive symptoms were evaluated with the
Geriatric Depression Scale-15 (GDS-15; 15-item short
German version [74, 75]). All MCI subjects were
rated below the GDS-15 cutoff score of five points
(M = 1.9, SD = 1.4; no depression). Structural MRI data
available for 10 out of 14 MCI subjects served to
exclude brain abnormalities such as stroke and malig-
nant brain tumors. No MRI scans were obtained from
the remaining four participants due to metal objects
within the body. However, their medical reports were
inconspicuous.

Neuropsychological examination

The following neuropsychological tests were per-
formed by all participants (see also Table 1): the Mini
Mental State Examination test (MMSE, range 0–30;
e.g., [76]), the Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD-Plus; e.g., [77])
with the subtests Boston naming test (range 0–15),
verbal fluency (semantic fluency and phonemic flu-
ency), and Trail Making Test A and B (TMT-A/B),
free immediate word recall (range 0–10), word recog-
nition (0–100%), as well as the German version of
the Wechsler Adult Intelligence Scale (HAWIE-R)
subtests digit span (range 0–28) and digit-symbol
substitution test (range 0–93) [78]. Younger adult con-
trols demonstrated superior performance in almost all
cognitive tests (see Table 1). Post-hoc tests revealed
that older controls showed reduced performance in
the free word recall (t(30) = 4.06, p < 0.001), in speed-
related tests, namely in the TMT-A (t(30) = −4.21,
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Table 1
Demographic, cognitive and behavioral data

Group Younga Olda MCIb F(2,43) p-value

Age (years) 22.3 ± 2.1 68.0 ± 3.4 70.6 ± 8.2 444.95 <0.0001
Education (years) 15.2 ± 1.9 14.8 ± 2.7 13.8 ± 2.3 1.34 0.27
MMSE 29.8 ± 0.5 29.3 ± 0.8 28.4 ± 1.2 9.38 <0.001
Boston naming test 14.6 ± 0.8 14.7 ± 0.5 14.1 ± 1.6 1.44 0.25
Free word recall 7.9 ± 1.4 5.8 ± 1.5 5.1 ± 1.7 14.34 <0.0001
Word recognition (%) 100.0 ± 0 96.3 ± 0.6 80.9 ± 2.0 11.12 0.0001
TMT-A (s) 27.8 ± 10.1 45.2 ± 10.7 50.9 ± 14.3 16.30 <0.0001
TMT-B (s) 57.4 ± 16.6 97.4 ± 34.8 136.5 ± 58.5 15.04 <0.0001
Verbal fluency 40.8 ± 7.0 38.3 ± 7.4 30.9 ± 7.6 7.41 0.002
Digit span test 16.4 ± 4.2 13.8 ± 2.9 13.8 ± 3.7 2.58 0.09
Digit-symbol test 64.9 ± 10.8 45.1 ± 10.8 39.2 ± 7.1 28.70 <0.0001
Flanker error 38.7 ± 20.4 19.4 ± 14.2 29.5 ± 16.3 5.05 0.01
Flanker correct 242.1 ± 24.5 261.3 ± 15.8 251.9 ± 19.0 3.65 0.03
Flanker RT error (ms)c 316.9 ± 46.8 459.8 ± 181.9 561.0 ± 204.1 17.57 <0.0001
Flanker RT correct (ms)d 398.6 ± 45.3 520.0 ± 114.6 609.2 ± 135.7 30.97 <0.0001

Values are means ± standard deviations. Flanker, adapted Eriksen Flanker RT task; RT, reaction time of erroneous (error) and correct trials; total
numbers of erroneous/correct responses given. an = 16 (7 males), bn = 14 (5 males), cdf = 2, 80 ddf = 2, 89.

p < 0.001) and TMT-B (t(30) = −2.87, p = 0.02) and in
the digit-symbol test (t(30) = 5.68, p < 0.0001) com-
pared to younger adults. Younger and older controls
showed no difference in MMSE score, word recog-
nition, or verbal fluency. Compared to older controls,
MCI subjects showed further reduced performance in
the MMSE (t(28) = −2.75, p = 0.02), the word recog-
nition test (t(28) = −3.61, p = 0.002), and in tests of
executive function, namely in the verbal fluency test
(t(28) = −2.79, p = 0.02) and the TMT-B (t(28) = 2.71,
p = 0.03). There was no difference between groups in
the Boston naming and the digit span test.

Task

As shown in Fig. 1, we used an adapted Eriksen
flanker RT paradigm [67] and presented 272 stim-
uli (arrays of five arrowheads) using Presentation®

software (Neurobehavioral Systems, Inc.). Each par-
ticipant underwent two training blocks followed by
four successive 3.5-minute blocks, all consisting of
four subsections with 17 trials each. Participants were
asked to correctly indicate the direction of the middle
arrowhead by pressing the left or right mouse button
with their right index or middle finger, respectively. In
addition, they were asked to respond as fast as possi-
ble without guessing. After each 17-trial-subsection,
visual feedback was presented with instructions to
respond faster if error rates were below 30% or to
reduce speed if error rates were above 30%. If a par-
ticipant failed to respond to at least one stimulus,
one additional 17-trial-subsection was added automat-
ically. Attention level was monitored throughout the
experiment by visual inspection (video camera).

Fig. 1. Experimental design of the adapted Eriksen Flanker task. Par-
ticipants were asked to indicate the direction of the middle arrowhead
by pressing the left (index finger, right hand) or right (middle finger,
right hand) mouse button. After each 17-trial-subsection, a visual
feedback was presented saying “nächster Block SCHNELLER!!!”
(go faster in the next section) or “nächster Block LANGSAMER!!!”
(go slower in the next section) to provide sufficient error rates (272
stimuli; trial duration = 3000 ms; feedback duration = 3000 ms).

EEG acquisition

EEG was recorded using a high-density 256-channel
HydroCelTM Geodesic Sensor Net (HCGSN; Elec-
trical Geodesics, Inc.; EGI; Eugene, Oregon, USA)
with Cz as reference electrode. Continuous data were
recorded with a sampling rate of 250 Hz with 0.1 Hz
high-pass and 100 Hz low-pass hardware filter. All
electrode impedances were kept below 50 k� before
starting the experiment, as recommended for the
applied amplifier by EGI acquisition guidelines.
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ERP analysis

Data preprocessing and artifact rejection (ampli-
tudes > 120 �V) was performed with BESA 5.3
software (Brain Electrical Source Analysis, Grae-
feling, Germany). After visual inspection, artifact-
contaminated single channels were conservatively
interpolated (range 0–5 %) using spherical spline inter-
polation [79]. Eye movement artifacts were removed
using the multiple source approach by Berg and
Scherg [80], and data were offline re-referenced to
original average reference. We aimed at a minimum
of six remaining errors after full artifact correc-
tion (see [81, 82]). Only two older controls had
less than eight errors (6 and 7) after artifact cor-
rection (the number of erroneous and correct trials
included into analysis after artifact correction for each
group are given in Supplementary Table 1; avail-
able online: http://www.j-alz.com/issues/35/vol35-
3.html#supplementarydata06). Data were filtered from
0.1 Hz (6 dB/octave, forward) to 30 Hz (12 dB/octave,
zero phase) for artifact rejection and high-pass fil-
tered with 0.1 Hz (6 dB/octave, forward) for averaging.
Response-locked averages were computed for erro-
neous and correct responses and filtered 0.1–15 Hz
(baseline −200 to −100 ms). ERN and CRN were
defined as the maximum negative peak at midline elec-
trodes Fz, FCz, Cz, and PCz (0–130 ms after button
press; 15 Hz low-pass filter, 24 dB/octave, zero phase).
Additionally, the error minus correct difference wave-
form was computed. Grand averages were computed
for each group by averaging all individual waveforms.

Behavioral data

RT and error rates were measured and analyzed.
Individual trials with RT shorter than 100 ms and
longer than 2400 ms were excluded from further anal-
yses. No participant exceeded 40% error rate.

Statistical analysis

Data analysis was performed with R statistical soft-
ware package of The R Foundation of Statistical
Computing (http://www.r-project.org; version 2.11.1
for Mac OS X, GUI 1.34 Leopard). Group com-
parisons for age, years of education, and cognitive
performance were conducted with univariate analy-
sis of variance (ANOVA) models. Group differences
in gender distribution were assessed by Pearson’s
Chi-squared χ2) tests. Mixed effects ANOVA models
with a random intercept for participants were cal-

culated in order to analyze the behavioral data of
the Flanker RT task and the ERP data while taking
repeated measurements into account (package nlme
for R [83]). Mixed effects ANOVAs for the behavioral
data were conducted with Accuracy (RT of erroneous
versus correct responses) × Condition (congruent ver-
sus incongruent) × Group for RTs and with Condition
(congruent versus incongruent trials) × Group for error
rates. Mixed effects ANOVAs for the ERN and CRN
were conducted with Electrode site × ERP (ERN ver-
sus CRN) × Group for the ERP amplitudes and with
ERP (ERN versus CRN) × Group for ERP latencies.
A mixed effects ANOVA for the error minus cor-
rect difference waveform’s amplitude with Electrode
site × Group and an ANOVA for group differences in
the difference waveform’s latency were calculated sep-
arately. Post-hoc tests were performed by lower order
ANOVAs and t-tests (two-tailed), applying Tukey’s
honestly significant differences (Tukey HSD) test
for multiple comparisons. Associations between ERP
components, age, years of education, and neuropsy-
chological test scores were further investigated across
groups using the Pearson’s r product moment corre-
lation coefficient. Normality assumptions of ANOVA
models’ residuals were tested using the Shapiro-Wilk
normality test. However, since the Shapiro-Wilk test
can be less accurate in smaller group sizes, residuals
were further visually inspected by density and quantile-
quantile plots. All tests for statistical significance were
applied with alpha (�)≤0.05. p-values of multiple cor-
relation coefficients were adjusted according to Holm’s
sequential rejection algorithm [84].

RESULTS

Behavioral Data

Reaction time (RT)
RTs are shown in Table 1 and Fig. 2a-b. A mixed

effects ANOVA of Accuracy × Condition × Group
revealed a main effect for Accuracy (F(1,120) = 35.23,
p < 0.0001) as well as an interaction of Condi-
tion × Group (F(2,120) = 5.79, p = 0.004). RTs were
shorter for erroneous compared to correct responses
(t(90) = −2.81, p = 0.005), however, there was no
significant interaction. As indicated by the Condi-
tion × Group interaction, younger controls performed
faster in both stimulus conditions compared to older
controls (congruent: t(30) = −4.67, p < 0.0001; incon-
gruent: t(30) = −3.80, p < 0.001) and MCI subjects
(congruent: t(28) = −6.48, p < 0.0001; incongruent:
t(28) = −7.19, p < 0.0001). However, older controls

http://www.j-alz.com/issues/35/vol35-3.html#supplementarydata06
http://www.r-project.org
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Fig. 2. Mean reaction times of younger adult controls, older adult controls and MCI subjects for (a) correct (Correct) and erroneous (Error)
trials and for (b) congruent versus incongruent trials. (c) Mean error rates for congruent and incongruent trials. Error bars represent standard
errors of the mean.

performed faster than MCI subjects only in the incon-
gruent condition (t(28) = −3.51, p = 0.002) but showed
similar RTs in the congruent condition.

Error rates
Error rates are shown in Table 1 and Fig. 2c. A

mixed effects ANOVA of Condition × Group revealed
an interaction of Condition × Group (F(2,43) = 9.39,
p < 0.0001). Error rates were higher in incongruent
compared to congruent trials in younger controls
(t(30) = 6.39, p < 0.0001), older controls (t(30) = 4.68,
p < 0.0001) and MCI subjects (t(26) = 4.71, p < 0.0001).
Furthermore, as indicated by the Condition × Group
interaction, younger controls committed more errors
than healthy older controls (t(30) = 3.84, p = 0.001) and
MCI subjects (t(28) = 2.77, p = 0.02) in incongruent tri-
als. Error rates did not differ between older controls
and MCI subjects in incongruent trials. There were no
group differences for congruent trials.

ERP Data

Grand averages of response-locked ERP waveforms
for correct and erroneous trials as well as for the differ-
ence waveform are shown in Fig. 3. The calculation of
the ERPs involved more correct than incorrect trials.
Amplitudes for each group are shown in Fig. 4.

ERN and CRN
A mixed effects ANOVA of Electrode

site × ERP × Group revealed interactions of Electrode
site × ERP (F(3,301) = 3.80, p = 0.01), Electrode site ×
Group (F(6,301) = 4.74, p = 0.0001) and ERP × Group
(F(2,301) = 8.76, p = 0.0002). The negativity following

errors was significantly larger than the negativity fol-
lowing correct responses across groups (t(90) = −7.53,
p < 0.0001). The ERN was most negatively pronounced
at electrodes Fz, FCz, and Cz but less at PCz (PCz
versus Fz/FCZ/Cz: all t(90)>5, p < 0.0001). In contrast,
the CRN was most negatively pronounced at Fz and
FCz but less at Cz and PCz (PCz/Cz versus Fz/FCz: all
t(90)>3, p < 0.01). In the young control group, no CRN
could be observed (i.e., the CRN amplitude was not
different from zero). There was no difference between
groups in ERN amplitude (F(2,181) = 0.73, p = 0.48).
However, the CRN was more negatively pronounced
in MCI subjects compared to younger (t(28) = −3.02,
p = 0.008) and older controls (t(28) = −2.50, p = 0.04).
There was no difference in CRN amplitude between
both control groups. The mean latency of the ERN
was 36.8 ms (SD = 25.2 ms) for younger controls,
50.9 ms (SD = 26.0 ms) for older controls and 43.7 ms
(SD = 39.6 ms) for MCI subjects. Latencies of the
CRN were on average 47.8 ms (SD = 52.3 ms) for
younger controls, 45.3 ms (SD = 24.4 ms) for older
controls and 40.0 ms (SD = 32.4 ms) for MCI subjects.
There was no main effect or interaction for ERN or
CRN latency.

Error minus correct difference waveform
(Error—Correct)

A mixed effects ANOVA of Electrode
site × Group revealed main effects for Elec-
trode site (F(3,129) = 10.73, p < 0.0001) and
Group (F(2,43) = 5.47, p = 0.008). The Electrode
site × Group interaction narrowly missed significance
(F(6,129) = 2.05, p = 0.06). A negative difference
waveform could be observed at all four electrodes
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Fig. 3. Response-locked waveforms for correct responses (Correct), erroneous responses (Error) and the error minus correct difference waveform
(Error–Correct) of younger adult controls, older adult controls and MCI subjects at electrodes Fz, FCz, Cz, and PCz (time window = −200–500 ms;
button press = 0 ms; negative up).

(most negative amplitudes at Cz) and was smaller
(i.e., less negative) in MCI subjects compared to
younger (t(28) = 5.02, p < 0.0001) and older controls
(t(28) = 3.57, p = 0.001). There was no difference in
the Error—Correct waveform’s amplitude between
younger and older controls. The mean latency of the
difference waveform was 46.5 ms (SD = 26.2 ms) for
younger controls, 66.8 ms (SD = 37.5 ms) for older
controls and 50.0 ms (SD = 36.3 ms) for MCI subjects.
However, the difference waveform’s latency did not
differ between groups.

Associations between ERP Data and Performance
in Tests of Executive Function

Pearson’s r correlation coefficient was calculated
across older participants (n = 30) for ERP amplitudes
(at electrodes Fz, FCz, Cz, and PCz) and cognitive
test performances in tests measuring executive func-
tion (i.e., digit span test, digit-symbol test, TMT-A/B,
and verbal fluency test). There was no correlation of
the ERN amplitude with any of the cognitive test
scores. However, after alpha correction for multiple
correlation coefficients according to Holm [84], cog-
nitive performances in the TMT-B and the verbal
fluency test were correlated with the CRN amplitude
(TMT-B: r = −0.51, p = 0.004; verbal fluency: r = 0.46,

p = 0.01) and with the difference waveform’s amplitude
(TMT-B: r = 0.44, p = 0.01; verbal fluency: r = −0.50,
p = 0.005). These correlations indicate that smaller
CRN amplitudes and larger Error–Correct differences
were associated with better performance in tests of
executive function (Fig. 5).

DISCUSSION

This study investigated electrophysiological cor-
relates of executive functions, more precisely of
performance monitoring (ERN and CRN) in younger
and older adults compared to older adults with clinical
MCI syndrome. We found that MCI is associated with
an increase in CRN amplitudes compared to younger
and older adult controls, but no group difference was
observed in the ERN component. Consistent with our
initial assumption, MCI subjects showed reduced dif-
ferentiation between ERN and CRN amplitudes (i.e.,
reduced Error—Correct difference waveforms) and
demonstrated overall worse behavioral task perfor-
mance compared to both younger and older adult
controls. In contrast to older controls, MCI subjects
failed to show the accuracy over speed preference as
it is normally observed in the older adults [48, 51].
Furthermore, older controls showed overall RT slow-
ing but no alterations in the ERN or CRN compared
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Fig. 4. Boxplots for the peak amplitudes of the response-
locked waveforms for correct responses (Correct), erroneous
responses (Error) and the error minus correct difference waveform
(Error–Correct) of younger adult controls, older adult controls and
MCI subjects at electrodes Fz, FCz, Cz, and PCz.

to younger controls. Most interestingly and consistent
with our third hypothesis, both the CRN and the differ-
ence waveform were significantly correlated with the
performance in cognitive tests demanding executive
control and inhibition, i.e., the verbal fluency test and
the TMT-B. These tests also discriminated between
normal age-related decline and MCI in our sample.
We postulate that error processing (during easy tasks)
remains intact during healthy aging. However, as older
adults move along the continuum from normal aging
to MCI (and later in life possibly further to AD; see
e.g., [30]), performance monitoring becomes less spe-
cific (as indicated by reduced Error–Correct difference
waveforms), which might reflect early pathological
aging.

Consistent with previous studies, all participants
showed larger electrophysiological negativities after
erroneous compared to correct trials at fronto-central
electrodes with controls showing no or only very small
negativities following correct responses (e.g., [55, 61],
see also [44]). The relationship of both ERN and
CRN, as reflected in the error minus correct differ-
ence waveform, was attenuated in MCI subjects but
was constant in younger and older adult controls. This
effect was previously reported in AD patients [58] but
had not been investigated in studies with MCI subjects
before.

As a correlate of error detection, the ERN reflects
detection of mismatches between response errors and
required (correct) responses [34, 44, 45] and can most
likely be observed after premature responses, so-called
“slips” [41, 45]. The CRN, in contrast, presumably
plays a more general role in performance monitor-
ing [35, 50]. It likely reflects error processing or
uncertainty during correct trials [33, 34]. We observed
no differences in ERN amplitude or latency between
groups. These results are consistent with previous stud-
ies applying different tasks to investigate the impact of
normal aging on the ERN component ([61]; see also
[63, 64]) but contradict earlier studies applying a sim-
ilar Flanker RT task in healthy subjects that showed
an age-related attenuation of the ERN in healthy older
compared to younger controls [53–55]. One possible
explanation might be related to methodological differ-
ences: The respective studies [53–55] applied a Flanker
paradigm to investigate age differences in performance
monitoring and error detection during premature (or
speeded) incorrect responses. Target and flanker stim-
uli were not presented simultaneously as in our study.
Instead, the central arrowhead was preceded by the
flankers by 100 ms, which might have reduced post-
response ambiguity (i.e., post-response conflict) due
to a decreased activation of the correct response and
enhanced premature motor activity [85, 86]. In line
with this assumption, Falkenstein et al. [53] reported no
age-related differences in the CRN (but see [55]) but all
the three studies showed a reduced ERN in older com-
pared to younger adults. In an earlier study, Maier et
al. [87] concluded that increased allocation of attention
to the flankers (as in [53–55]) reduces response con-
flict and error detection, which might be reflected in a
reduced ERN. This was not investigated in our study
but as the studies of Falkenstein et al. [53], Hoffmann &
Falkenstein [54], and Schreiber et al. [55] indicate, this
effect might be more pronounced in older age. Incon-
sistencies in age-related alterations in the ERN (and
CRN) component might further be related to differ-
ences in exclusionary criteria for older adult controls.
In contrast to our study, most of the previous studies
investigating ERN in young compared to older adults
either did not thoroughly examine cognitive functions
or did not report whether older adults with probable
MCI were excluded [36, 51, 53–57].

The literature about age effects on the CRN is limited
and conflicting [55, 58, 61]. Consistent with a previous
study [53], we found no differences in CRN amplitude
or latency in older adults without MCI compared to
younger adult controls. Furthermore, studies with clin-
ical samples suggested that the CRN is a marker of
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Fig. 5. Correlation of the CRN amplitude (left) and the error minus correct (Error-Correct) difference waveform’s amplitude (right) at electrodes
Fz, FCz, Cz, and PCz with Trail Making Test (TMT) B (a and b) and verbal fluency (c and d) in older participants (n = 30).

(pathology-related) alterations in performance moni-
toring and cognition in general [66, 88]. The significant
increase in CRN amplitude in MCI subjects compared
to both control groups could be related to various fac-
tors: The CRN can be induced by response ambiguity
(i.e., uncertainty) but also by stimulus misperception
or speed over accuracy instructions [44, 45, 48, 49].
We assume that the latter two factors did not contribute
significantly to the reported differences in CRN ampli-
tude between MCI subjects and controls: (i) Stimulus

misperception was minimized since our experimental
task was rather simple, with moderate stimulus dura-
tion (200 ms) and training sessions to consolidate the
relevant S-R associations (training sessions were not
included in the ERP analysis). The subjects’ vision was
normal or corrected to normal. (ii) The task instruc-
tion focused on both speed and accuracy. Feedback
during the task induced time pressure. However, since
the response deadline was rather long (2200 ms) and
feedback was only presented after each subsection
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of 17 trials, we assume that the feedback did not
affect MCI subjects significantly more than controls.
However, since target and flankers were presented
simultaneously, we assume that the reported increase in
CRN amplitudes in MCI is mainly related to simultane-
ous co-activation of the correct and incorrect responses
(i.e., uncertainty) and the resulting increase in mis-
match detection demands [89, 90]. This assumption
is consistent with the literature reporting that stronger
representation of the incorrect compared to the cor-
rect response (i.e., sub-threshold co-activation of the
incorrect response during correct reactions) can lead
to increased CRN amplitudes [44, 91] and, hence, to
decreased Error–Correct differences as we observed in
MCI subjects. This is further supported by Shackman et
al. [92] who concluded that the cingulate cortex (more
specifically, the aMCC) integrates negative affect dur-
ing responses (e.g., uncertainty), possible (negative)
response outcomes (e.g., errors), and cognitive control
(e.g., to resolve uncertainty or response conflict).

Our ERP and behavioral data indicate that uncer-
tainty remained high in MCI subjects compared to both
younger and older adult controls throughout the exper-
iment. One possible explanation could be that MCI
subjects have lower cognitive control, leading to less
efficient inhibition of the flanker stimuli (i.e., to worse
speed and accuracy performances). The increase in
CRN amplitude, as observed in our study, might reflect
this performance monitoring deficit in MCI subjects.
In contrast, the preserved dissociation between ERN
and CRN (i.e., unchanged Error–Correct difference)
in healthy older compared to younger adults might
indicate that older adults without MCI still have suf-
ficient inhibitory ability during easy response conflict
tasks ([93], see also [54]). This idea is supported by the
literature, indicating that although inhibition becomes
more difficult with increasing age [51, 52], it conspic-
uously deteriorates in MCI and early AD [94, 95]. In
daily life of MCI subjects, a performance monitoring
deficit might presumably lead to inefficient correc-
tion of action strategies despite otherwise intact overall
daily functioning. This is further supported by recent
studies reporting impairments in complex activities of
daily living in older adults with MCI compared to age-
matched controls [96, 97].

CONCLUSION

First, our results indicate that MCI is associated
with less specific performance monitoring as reflected
in a failure of electrophysiological differentiation

following erroneous versus correct behavioral
responses (i.e., reduced Error–Correct difference
waveforms). For the older participants of both the
MCI and the older control group, the Error–Correct
difference was significantly correlated with cognitive
test performance demanding high executive control
and inhibition. Second, our findings support the
growing evidence that ERN and CRN are distinct
components reflecting error-specific versus overall
performance monitoring, respectively [50, 55, 58, 61,
98]. Finally, ERN and CRN are differentially affected
by healthy aging compared to MCI. These results
might be of interest for future studies investigating
frontal dysfunction in MCI.
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