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The damping rates of high quality factor nanomechanical resonators are well beyond intrinsic lim-
its. Here, we explore the underlying microscopic loss mechanisms by investigating the temperature-
dependent damping of the fundamental and third harmonic transverse flexural mode of a doubly
clamped silicon nitride string. It exhibits characteristic maxima reminiscent of two-level defects
typical for amorphous materials. Coupling to those defects relaxes the momentum selection rules,
allowing energy transfer from discrete long wavelength resonator modes to the high frequency phonon
environment.

PACS numbers: 85.85.+j,62.40.+i,63.50.Lm

Silicon nitride (SiN) is a material widely used for reso-
nant micro- and nanomechanical devices because of its
superior mechanical properties [1–12]. The transverse
flexural modes of string resonators fabricated from pre-
stressed SiN thin films exhibit extremely high mechani-
cal quality factors [2, 8–10]. They originate from the fact
that an increase in tensile stress only slightly increases
the mechanical damping rate Γm, whereas it dramati-
cally increases the resonance frequencies fm and thereby
the quality factorQ = 2πfm/Γm [8]. Nonetheless, the ob-
served damping is significantly larger than expected from
intrinsic loss mechanisms such as clamping losses caused
by the direct radiation of phonons at frequency fm into
the supporting clamping points [13, 14] or by thermoe-
lastic damping [15]. In an attempt to shed light on the
limiting loss mechanisms, damping was found to be pro-
portional to the local bending within the resonator and
governed by both bulk and surface defects [8]. More re-
cently, the damping has been shown to be dominated
by T1-like energy relaxation processes [16]. Such pro-
cesses involve a transfer of energy from discrete resonator
modes at comparably low frequencies fm into the high
frequency phonon bath that dominates the heat capac-
ity and thermal conductivity. However, their different
dispersion relations inhibit a direct energy transfer via
two-particle scattering. It takes local defects to enable
energy transfer into the bath via three particle scattering
and to relax momentum conservation. Such defects are
omnipresent in amorphous materials. For example, a lo-
cal configurational change of the atomic structure gives
rise to a double-well potential separated by an energy
barrier, which at low temperatures can be modeled as a
two-level system (TLS). These TLS are known to lead
to characteristic maxima in the temperature dependence
of the sound absorption in the temperature range of 10
to 100 K [17–20]. The signature of TLS has also been
observed in the damping characteristics of a microme-
chanical silica resonator [21] and in a backaction-evading
measurement on a SiN membrane performed at mK tem-
peratures [22].

To clarify whether the microscopic nature of the damp-
ing in high Q SiN nano resonators is dominated by
local defect scattering induced by such two-level sys-
tems, we study the temperature-dependent damping of
nanoscale string resonators fabricated from prestressed
SiN films. Simultaneous measurements of the fundamen-
tal and third harmonic flexural mode of such a resonator
allow to not only test the characteristic temperature- but
also the frequency-dependence of the established TLS
model. Our findings demonstrate that the two-level de-
fect states thus found in silicon nitride are rather similar
to the ones found in silica [19] and amorphous silicon [20].
In contrast to high-purity silica, our SiN resonators fea-
ture a second maximum in the temperature-dependent
damping, which might be attributed to hydrogen con-
tamination during thin film deposition. An only weakly
temperature-dependent damping background most likely
originates from damping via surface defects. Our findings
will enable further increase of quality factors of nanome-
chanical resonators towards intrinsic limits set by the en-
ergy transfer to the environment [13–15]. For the fun-
damental string resonator mode at a frequency of about
6.8 MHz studied below, the dominant limit, set by clamp-
ing losses, is estimated to be about 3 million [23] at room
temperature, an order of magnitude above the observed
Q of 0.3 million.

The nanomechanical resonator exemplarily shown in
this work is a 100 nm thick, 250 nm wide and 55 µm long
doubly clamped string fabricated from a prestressed sili-
con nitride film deposited on a fused silica substrate [24].
It is flanked by two lower-lying gold electrodes which are
used for gradient-field induced dielectric actuation [25]
and simultaneously [26] allow for sensitive electrical de-
tection of its motion via the coupling to a microwave
cavity [24] with frequency fc � fm (m = 1, 3). The
mechanical resonator is investigated at pressures below
5 · 10−5 mbar inside a pulse tube cooler [16] to avoid gas
damping. Control of the pulse tube operation in combi-
nation with a powerful Ohmic heater allows to stabilize
the temperature of the sample (measured inside the brass
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FIG. 1. (color online). Total mechanical damping of the fun-
damental resonator mode versus microwave cavity drive fre-
quency (black dots) at 10.5 K. The total damping Γ = 2π∆f
consists of the intrinsic mechanical damping Γm and an op-
tomechanical damping contribution Γopt. By fitting the total
damping versus cavity drive frequency curve (red line), the
intrinsic mechanical damping Γm (m = 1) and the cavity
resonance frequency fc can be extracted for the respective
temperature. Two exemplary spectra with Lorentzian fits,
corresponding to maximal (right, green) and zero (left, blue)
optomechanical damping (see colored dots in the main figure),
are shown in the inset.

sample holder a few millimeters below the fused silica
chip) anywhere between 7 and 350 K with a precision of
at least 0.1 K.

The microwave detection scheme exerts radiation pres-
sure induced optomechanical backaction forces on the
mechanical resonator [24, 27]. This causes the measured
damping Γ = 2π∆f , extracted from the linewidth ∆f
of the mechanical resonance, to characteristically de-
pend on the detuning of the microwave drive frequency
fd from the cavity resonance frequency fc [24]. We ex-
tract the intrinsic damping Γm (m = 1, 3) at fd = fc
where backaction effects are negligible, as shown in Fig. 1.
To account for the temperature dependence of the cav-
ity resonance, mechanical resonance curves are recorded
for a multitude of cavity drive frequencies fd at every
temperature. This measurement is conducted in paral-
lel for the fundamental out-of-plane mode with a res-
onance frequency f1=6.8 MHz and the third harmonic
mode at f3=20.2 MHz using two network analyzers mul-
tiplexed via powersplitters. Exemplarily, Fig. 1 shows
the response of the fundamental mode at 10.5 K. A fit of
the optomechanically influenced [24, 27] total damping
Γ(fd) = Γm + Γopt(fd) (corresponding to the linewidth
∆f , see inset) yields the net intrinsic damping Γ1 of the
fundamental mode and also the precise cavity resonance
frequency fc at this temperature. The intrinsic damping
of the third harmonic mode Γ3 is obtained by taking the
average over the 20 closest datapoints to the cavity res-
onance frequency fc. A direct fit is not possible as the
optomechanical damping of this mode is too weak, how-
ever, it is point symmetric around fc (cf. Fig. 1) such
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FIG. 2. (color online). The measured mode damping Γ1 of
the fundamental mode and Γ3 of the third harmonic mode is
shown versus temperature in panels (a) and (b), respectively.
The error bars in (a) represent the errors of the optomechan-
ical fits like the one shown in Fig. 1 while the ones in (b)
correspond to the standard deviation of the averaged mea-
surements.

that averaging yields the intrinsic Γ3.

The temperature of the cryostat is now varied between
7.5 and 349.5 K in steps of 1 K, and the above procedure
is repeated for every temperature. Figure 2(a) shows the
obtained temperature dependence of the intrinsic damp-
ing Γ1(T ) of the fundamental mode with error bars in-
dicating the errors extracted from the optomechanical
fits. The damping of the third harmonic Γ3(T ) is plotted
versus temperature in Fig. 2(b), here the error bars cor-
respond to the standard deviation of the 20 data points
closest to fc. Both spectra similarly exhibit two distinct
maxima, one at approximately 50 K and the other one
near 200 K.

The lower-temperature peak is a clear signature of
the two-level system defects in the amorphous SiN [19].
These configurational changes in a glassy material can
be modeled by a particle in a double-well potential with
barrier height V and asymmetry ∆ between the two
wells which tries to overcome the barrier with an at-
tempt frequency τ−10 . As there are a multitude of dif-
ferent defects, both V and ∆ are distributed over a cer-
tain range, characterized by two cutoff parameters V0
and ∆C [19]. At the elevated temperatures studied in
this experiment, thermally activated processes dominate
over resonant tunneling, leading to a pronounced max-
imum in the damping rate when the hopping rate, i. e.
the inverse of τ = τ0e

V/T (V and ∆ are always given in
units of temperature) is equal to the mechanical oscilla-
tion frequency 2πfm of the respective mode. Assuming a
mode-dependent damping background, probably caused
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FIG. 3. (color online). Fitted TLS (a) and Arrhenius (b) peaks of the fundamental (lower, blue) and third harmonic (upper,
red) mode. Both classes of peaks were fitted using a single set of parameters for both modes except a mode-dependent damping
background. The actual fits are shown as solid lines. The dashed lines illustrate the frequency dependence of the fits as they
use the same set of parameters, but interchanged frequencies of the two modes.

by surface defects, the low-temperature peaks of both
modes can be fitted with a single set of parameters em-
ploying equation (9a) of Ref. [19]. To this end, the mea-
sured damping constants are converted into an inverse
quality factor Q−1 = Γm/(2πfm), which is the com-
monly used quantity in the field of TLS damping. Note,
however, that inverse quality factors can only be used
to compare the internal friction of resonators with equal
stress, as tensile stress increases fm with little change in
Γm [8]. The data points of both modes and the respective
fits [19] (solid lines) are shown in Fig. 3(a). The dashed
lines, which are obtained by plotting the resulting fit
functions with the two mechanical frequencies exchanged,
illustrate the clear frequency dependence of the fit. The
parameters extracted from the fit are V0 = 460 ± 4 K,
ΛC = 110 ± 2 K and log10 τ0/s = −11.24 ± 0.02 using a
background of 1.78±0.02 ·10−6 and 2.62±0.02 ·10−6 for
the fundamental and third harmonic mode, respectively.
Comparing these values with the ones reported for sil-
ica [19] for a lack of reference values on SiN, a maximum
deviation of 30% is observed, indicating that the nature
of the defect states is rather similar in both materials.

The dissipation maximum found at temperatures near
200 K can be explained by a so-called Arrhenius peak [28–
32], indicative of a thermally activated relaxation pro-
cess over a well-defined barrier height V (in constrast
to the broad distribution governing the behaviour of the
typical two-level defects in glassy material). The most
likely candidate for these well-defined states might be
the hydrogen defects present even in very clean LPCVD
silicon nitride films [33]. The dissipation behaviour of
such a defect can be modeled assuming a delta-function
distribution located at V = VA for the barrier height
and by neglecting the comparatively small energy differ-
ence between the two potential wells. Both peaks can
be fitted using the same set of parameters but two some-
what different background damping constants for the two

modes. The measured inverse quality factors along with
the solid fit lines are shown in Fig. 3(b). As in panel
(a), the dashed lines demonstrate the frequency depen-
dence of the fit by illustrating the fitting functions with
interchanged mechanical frequencies. A barrier height
of Va = 2354 ± 10 K and an inverse attempt frequency
log10 τa/s = −13.32±0.02 are extracted for the Arrhenius
peaks, using a dissipation background of 3.08±0.02·10−6

and 4.37±0.02·10−6 for fundamental and third harmonic
mode, respectively.

Comparison of the dissipation backgrounds found at
low and high temperatures reveals a slow increase of the
overall damping with increasing temperature for both
modes. This is consistent with earlier studies [31, 34], and
may be connected to the temperature dependent damp-
ing of surface defects (see Supplement of [8]), which are
the most likely candidates to cause the remaining dissi-
pation not accounted for in our analysis.

The experimental data convincingly demonstrates that
material defects play a significant role in the damping of
prestressed SiN nanoresonators. In the following, we will
establish a corresponding microscopic picture which con-
sistently models the experimental evidence that damping
is (a) caused by energy relaxation processes [16], (b) in-
volves TLS and (c) is not limited by the well-known in-
trinsic damping mechanisms [13–15]. For the sake of sim-
plicity we will employ a quasiparticle approach based on
phonon scattering to illustrate how mechanical vibration
energy is transported out of the string during each oscil-
lation period: The dispersion relation of the longitudinal
bulk phonon mode [35] along with the discrete flexural
resonator modes are shown in Fig. 4. Bulk modes with a
small wave vector k can not enter or leave the mechani-
cal resonator as they are reflected at the huge mechanical
impedance mismatch at the clamping ponts [36], making
them play a negligible role in the energy transport out of
the string. The only way for the two kinds of modes to
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FIG. 4. (color online). Dispersion relation of the discrete
modes of the nanomechanical resonator (blue or gray) along-
side the longitudinal bulk phonon mode visualizing the sit-
uation inside the string (black). The mechanical impedance
mismatch between resonator and clamping points makes it in-
creasingly difficult for long-wavelength bulk phonons to enter
or leave the mechanical resonator, which is indicated by the
fading black line. The inset visualizes a scattering process
involving a two-level defect system which allows a thermally
excited high-energy phonon Ω to absorb the energy of one
resonator phonon ωm = 2πfm and carry it out of the string.

interact is via localized defect states inside the resonator,
which mediate the interaction between the freely propa-
gating high-energy bulk phonons and the low-energy res-
onator phonons. They also provide the excess momentum
to enable thermally excited bulk phonons to scatter off a
resonator phonon. This process is illustrated by the inset
sketch in Fig. 4. As the high-energy bulk phonon modes
are highly populated at temperatures of a few kelvin (see
the temperature scale in Fig. 4), all resonator phonons
which interact with a TLS are not re-emitted into the
mode but rather scatter with a bulk phonon. Hence, the
proposed process is consistent with the observation that
there is no measurable phase relaxation of the mechan-
ical mode [16]. Furthermore, high-energy bulk phonons
with velocity vph and mean free path lph can efficiently
remove the excess energy ωm from the resonator as long
as their thermal relaxation rate Γth � Γm. We estimate
Γth = Gth/C ' vphlph/L2, governed by the thermal con-
ductance Gth and the heat capacitance C of the resonator
of length L, to be at least an order of magnitude faster
than Γm with lph of a few nm in glassy materials [20, 35].
Thus, three particle scattering with a TLS can indeed
provide the required energy relaxation paths to damp
the resonator vibration.

In conclusion, our results demonstrate that the in-
ternal dissipation of a nanomechanical SiN resonator is
governed by the well-established microscopic phenom-
ena known from low-temperature glass physics. The
temperature-dependent damping reveals that two-level
system defects, i. e. configurational changes of the atomic
structure in an amorphous material, are also found in sil-
icon nitride. Additionaly, a second, Arrhenius-type peak
in the damping observed at higher temperatures indi-
cates another kind of impurity in the material, probably

hydrogen atoms incorporated during SiN thin film depo-
sition.

The presented measurements offer a new way to an-
alyze the mechanical quality of SiN films and may even
be useful to quantify the hydrogen content. Furthermore,
the observation that these dissipation mechanisms are re-
lated to the amorphous structure of the material clearly
sets expectations for even higher quality factors in single
crystalline resonators if subjected to similar tensile stress.
Assuming a negligible influence of surface defects caused
by fabrication or subsequent oxidation, their quality fac-
tor should only be limited by fundamental effects such as
clamping losses and thermoelastic damping, which leaves
room for improvement by at least an order of magnitude.
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