


(x direction). Therefore, the induced charge distribution on the 
resonator can be approximated by a dipole oriented in the x direction 
proportional to the electric fie ld component in this direction : 
Px = XEx, with susceptibility X. The charging qi of each electrode is 
described by a point charge. Neglecting the electrostatic contribution 
of the influenced charges, the z component of the resulting force Fz in 
this simple dipole approximation is proportional to the field gradient 
along the x direction: 

(I) 

r - r i 
with. E(r) = L... qi 3 

i = 1,2 Ir - rd 
Using the mutual distance ofthe electrodes Ir, - r21 and the resonator 
susceptibility X as fit parameters, the simulated results are well 
approximated (see red line in Fig. Ib). Neglecting small deformations 
of the resonant element by electrical forces, eq uation (I) predicts a 
quadratic dependence on electric field, just as in the case of capacitive 
actuation". Weakly modulating the applied bias voltage therefore 
gives rise to an osci llating force: 

F[Vd .c + Vr.r.l = CI (Vd .c + Vr.rf=CI VJc. +2cl Vd .c. Vr.r. (2) 

with CI a constant 

Equation (2) shows that two independent parameters ensure optimized 
actuation: while Vr.r. is employed to actuate the oscillatory motion of the 
resonator, the amplitude of Vd,", independently controls the strength of 
the polariza tion. This striking behaviour is a distinct feature of electrical 
reali za tions of dielectric force gradients. Optically generated gradient 
forces which have recently been reported as actuation for nanomecha­
nical resonators" do not incorporate this polarization tunability 
because both polarization and actuating force result from the same laser 
field . Unlike for the related concept of laser tweezers employing 
polarizing quasi-static electrical fields', the polarizing d .c. voltage allows 
efficient operation even in the case of a reduced susceptibility X(w) in 
the freq uency regime of resonator eigenmodes. 

Our experiments are performed at room temperature in a vacuum of 
P< 3 X LO - 3 mbar to excl ude gas damping. Resonators with typical 
dimensions of (30-40) X 0.2 X 0.1 (length X width X height) 
are fabricated from high-stress silicon nitride' U using standard litho­
graphic methods. The drive electrodes are defined by lithographic post­
processing on fully released beams, enabled by the strong tensile stress of 
1.4 GPa of tlle silicon nitride film. Several resonators processed on 
different sample chips were investigated. The results shown in this work 
are representative and have been taken from three distinct resonators. 

Using a standard fibre-based optical interferometer", we detect 
the out-of-plane displacement of the reso nator sensitively enough to 
resolve the Brownian motion of the resonator, as shown in Fig. 2a. 
The fundamental resonance is described by a harmonic differential 
equation, with effective mass 11'1, spring constant ko, eigenfrequency 
fo = J kolm/2 Tt, mechanical quality factor Q and external force F. 
For the investigated resonators, fo li es between 5 and 9 MHz, while Q 
ranges from 100,000 to 150,000, comparable to values reported 
elsewhere'o. The frequency spectrum of the thermally driven system 
is Lorentzian. Its calculated amplitude2

" is used as a calibration to 
convert the measured optical signal into displacement. Figure 2b 
displays the driven resonator amplitude versus frequency along with 
a Lorentzian fit. The measured resonance amplitude (all ind ica ted 
amplitudes are half-peak-to-peak amplitudes) for an actuat ion with 
Vd.<. + Vr.!: = I V :t 0.2mV is about :t o.8 nm. A simple model based 
on the simulated forces yields ± 0. 3 nm when assuming a dielect ric 
constant of silicon nitride of7 (the literature" reports values between 
6 and 9), which is in fa ir agreement. From the experimenta l data we 
estimate that a minimal actuation voltage V, .. r. = ± 5 is suffic ient 
to drive more strongly than the Brownian motion for a bandwidth of 
50 Hz. With the simulated value of e,m>!,,"1 = 1.5 flO this translates 
in to resonantly charging the electrodes by just 0.05 electro ns, which 
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Figure 21 Response of the dielectrically driven nanomechanical resonator. 
a, Brownian motion at room temperature for V,I.,. = 1 V without d . 
excitation. b, Dielectrically driven oscillation with V,I. ,. + V,.r. = I V = 0.2 mY, 
corresponding to an d. power of - 70 dBm. The data in a and b (dots) are well 
fitted by Lorentzians (red lines). The magnitude of the Brownian motion is 
used to convert the measured signal into the amplitude of the resonator 
displacement. c and d, Response of the resonator as a function of frequency 
and d.c. bias voltage at rJ. drive V"r. = = 0.06 m V. In c, the power response is 
logarithmically colour-coded. The resonance frequency decreases 
quadratically with Vd" . (fit shown by the black line). The resonant amplitude 
of c is displayed as a function of the d.c. bias in d, reflecting the linear 
dependence of the resonator polarization on d.c. bias voltage (fit shown by the 
red line) . 

is below recently reported results'. In Fig. 2c individual power res­
ponse traces are plotted as a function offrequency on a colour scale for 
a series of Vd.c. and V ... r. = ± 63IlV. The corresponding resonant 
amplitude is depicted in Fig. 2d . It dearly scales linearly with the 
applied d.c. bias voltage, as expected from equation (2). T he resonance 
frequency decreases quadratically with bias voltage (see fit indicated 
by solid black line in Fig. 2c). This can be readily understood from the 
force dependence on the distance d (see Fig. Ib). Expanding this 
dependence around the equilibrium position do yields: 

DF 2 
Dd8d + O(8d) (3) 

The constant term Fo leads to a new equil ibrium position and can be 
ignored. However, the term linear in displacement (at the same time 
quadratic in applied voltage) acts as an add itional spring constant on 
the resonator. It follows from Fig. Ib that this contribution is negative 

for the given d = 300 nm. The resulting eigenfrequency 10 therefore 
shifts in lead ing order with the observed quadratic voltage dependence: 

- 1 
fo = 2Tt ( 4) 

with C2 a consta nt 

Figure 3a exhibits a frequency tuning range of more than 100 kHz, 
corresponding to approximate ly 1,000 full width at ha lf maximum 
(FWHM = 100 Hz). 

Subject to strong actuation, the resonator response enters the non­
linear regime. This can be achieved for relatively small actuation 
powers, which do not give rise to a significant thermal heating of the 
sample (see Supplementary Information ). Higher-order terms in dis­
p lacement display similar tuning effects" , which will be presented 
elsewhere. The voltage tuning enables parametric excitation: a modu­
lation of the resonance frequency at about 210 can give rise to instabili ty 
and self-osci llation of the system even without the applied resonant 
force FH

.'.'. Figure 3b depicts the power response versus detection 
frequency f near 10 and rJ. frequency modulation power leading to 
the modulation amplitude 8f (see Pig. 3a) . The characteristic Arnold 
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Figure 3 I Tuning and parametric transduction of the 
nanoelectromechanical resonator. a, Power response of the resonator at 
Vr .f. = ::!: 2 m V sampled around the resonance. To minimize long-term drifts, 
traces are taken with increasing absolute value of d.c. bias reversing sign 
between consecutive traces (see Supplementary Information). band 
c, Interferometric versus dielectric detection. b, Interferometrically 
measured power response subject to parametric actuation around 210 at 
Vd.c. = 3 V. The resonance frequency is modulated at 2[ with the d . power 
plotted on the y axis, while the detection frequency [is plotted along the x 
axis. c, Power response of a parametrically excited resonator using dielectric 
detection at V,i.c. = 20 V. As in b, the resonator was driven by a frequency 
modulation at twice the detection frequency as a function of modulation 
power and detection frequency. The response reproduces the 
interferometrically measured data from b, even though a sample with a 
different electrical environment was used. 

tongue' indicates the region ofinstabiIity and self-oscillation as experi­
mental evidence of Rarametric actuation . In particular, when the 
resonance frequency 10 is modulated at exactly twice its value with 

8f( t) = 8f ><.. cos ( 2 ( 21tlo ) t)' theory predicts the transit ion to occur 

when 8f > 10/ Q. For the case shown in Fig. 3a, the transition is 
expected for a driving power of - 25 dBm, which is in good agreement 
with the data. However, we note that there is some ambiguity in 
defining the onset of spontaneous oscillation ". 

Reversing the actuation principle, we can also electrically detect the 
motion of the resonator locally. Therefore, on a different sample, a 
second pair of biased electrodes is introduced, which had previously 
been shunted with the driving electrodes (see Fig. la). T he oscillating 
motion of the polarized resonator modu lates the mutual capacitance 
of these electrodes, thereby creating an electrical signa l. To avoid cross­
talk from a resonant drive signal, the beam was parametrically excited 
around 210, as discussed above. The dielectric detection scheme uses an 
impedance converter near the sample and is demonstrated in Fig. 3c. 
To est imate the achieved sensitivity, the response amplitudes of Fig. 3b 
and c are compared when the resonator is driven 10 dB beyond the 
onset of spo ntaneo us oscillation. An amplitude of ::':: to nm resu lts in 
an electrical signal power of approximately - 80 dBm. As the noise 
level is about - 100 dBm when measuring at 50 H z bandwidth , the 
sensit ivity is approximately 20 pm Hz - 1/2 for the unoptimized device. 
An estimate of the limits of this detection scheme using a more 
advanced set- up can be found in the Supplem entary In formation. 

Although other electrical displacement sensors have obtained higher 
sensitivities' 3.2s.' 6, the integration with a highly effic ient, material­
independent drive makes our dielectric scheme an interesting candidate 
for nanomechanical transduction. 

In conclusion, by taking advantage of dielectric gradient forces, we 
realize and quantitatively validate a new and widely applicable actuation 
and readout scheme for nanoelectromechanical systems. It is on-chip 
and scalable to large arrays, broadband potentially beyond the gigahertz 
regime, and imposes no restrictions on the choice of res()nator mater ial. 
It thus enables the optimization of mechanical quali ty factors of the 
resonator without being bound by specific material requirements. The 
sensitivity of mechanical sensors scales with the quality facto~, so we 
anticipate the scheme to be of interest in the fast-developing field of 
sensingS,r. . Capable of locally addressing individual resonators, it is 
particularly relevant for bio-sensing, where large arrays of individually 
addressable resonators are desirable to analyse multiple constituents. 
Because the driven mechanical element can be fabricated separately 
from the actuating capacitor, it will also permit bottom-up fabrica­
tion" . Using this actuation scheme we demonstrate strong electrical 
field -effect tuning of both the resonance amplitude and frequency. This 
facilitates parametric excitation of the resonator at 2f, thus allowing 
decoupled detection of its oscillation at f The large frequency tuning 
range can, for example, be used for in-situ tuning of several mechanical 
elements into resonance' · or coupling to external elements2

" . Moreover, 
the combination of parametric excitation and (even weak) signal 
extraction enables digital signal processing based on mechanical ele­
ments, as has recently been demonstrated for microelectrom echanical 
resonators" . With additional tuning, an almost ideal electromechanical 
bandpass fllter has been suggested7

• Whereas we already achieve highly 
efficient actuation, as reflected by the low driving voltages in the micro­
volt regime, the sensitivity of our detection scheme can be significantly 
enhanced by, for example, using a microwave tank circuit' 6. This also 
opens a pathway to cooling the mechanical eigenmodes26
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