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Starting from a general N -band Hamiltonian with weak spatial and temporal variations, we derive
a low energy effective theory for transport within one or several overlapping bands. To this end, we
use the Wigner representation that allows us to systematically construct the unitary transformation
that brings the Hamiltonian into band-diagonal form. We address the issue of gauge invariance and
discuss the necessity of using kinetic variables in order to obtain a low energy effective description
that is consistent with the original theory. Essentially, our analysis is a semiclassical one and
quantum corrections appear as Berry curvatures in addition to quantities that are related to the
appearance of persistent currents. We develop a transport framework which is manifestly gauge
invariant and it is based on a quantum Boltzman formulation along with suitable definitions of
current density operators such that Liouville’s theorem is satisfied. Finally, we incorporate the
effects of an external electromagnetic field into our theory.

PACS numbers: 03.65.Sq,03.65.Vf,72.10.Bg,73.43.-f

I. INTRODUCTION

When performing a semiclassical analysis, one natu-
rally encounters Berry phases1 and meanwhile, the im-
portance of these so-called geometrical phases in con-
densed matter physics is beyond question2–5. For exam-
ple, not long ago it was realized that the electric polariz-
ability can be defined in terms of a Berry curvature, for
the first time a consistent formulation of this subject6.
Furthermore, research in the field of the anomalous Hall
effect (AHE) has shown that the intrinsic contribution
is related to a Berry curvature, which is a quantum me-
chanical property of a perfect crystal7–9. Also, magnetic
monopoles appearing in the definition of a momentum
space effective magnetic field give important modifica-
tions to universal conductance fluctuations5. Finally,
topological interference effects arise from spin Berry
phases in single molecular magnets10.

There are different ways to obtain semiclassical trans-
port equations (see Refs. 3 and 4 and references therein),
like wave-packet analysis11,12, or the systematic diagonal-
ization method developed by Gosselin and coworkers13–15

which, however, does not include the possibility of time-
dependent perturbations. Furthermore, there are vari-
ous works treating semiclassical quantum transport equa-
tions that incorporate Berry phase effects: the scenario
of a general 2-band model is considered by Wong and
Tserkovnyak16, and spin-orbit coupled systems17 as well
as a non-Abelean gauge-field formulation18 is investi-
gated. The Löwdin partitioning, or quasi-degenerate per-
turbation theory, used in the book of Winkler19 to de-
rive effective models for certain bands in spin-orbit cou-
pled semiconductors can also be related to a semiclassical
treatment, however, there focus is only put on the Hamil-
tonian, not on the dynamical variables or other aspects
of the system.

In this work, we present a self-contained derivation of
the semiclassical dynamics which is based on the Wigner

representation20 – or phase-space representation of quan-
tum mechanics – which is a natural starting point for a
semiclassical analysis. One big advantage is that one can
obtain corrections systematically to arbitrary order in
~. Also, a re-quantization of the effective theory is not
necessary, which is a big drawback of the wave-packet
analysis which derives a Lagrangian from the equations
of motion for the wave-packet center of mass coordinates,
and it is not always clear what the canonical conjugate
variables are. The relation between canonical and kinetic
pairs of conjugate variables, however, emerges naturally
in our formalism. We adopt a 4-component vector nota-
tion which allows us to incorporate spatial inhomogene-
ity as well as temporal variation on an equal basis. In
the course of our treatment, we will find how fictitious
electric and magnetic fields (real space and its momen-
tum space pendants) appear in effective theories and we
complete our work by developing a low energy effective
quantum transport theory which is manifestly gauge in-
variant and consistent with a description in the original
frame. Finally, we address the interesting question of how
an external electromagnetic field modifies the formalism.

We have several scenarios in mind of applying our for-
malism to: studying the electron dynamics in the pres-
ence of an arbitrary inhomogeneous and time-dependent
ferromagnetic exchange field, which exhibits many inter-
esting phenomena21–23. One can make various general-
izations like adding a spin-orbit coupling term, which
would give rise to an even much broader range of new
effects such as the anomalous Hall effect, and the lat-
ter would be additionally modified by the inhomoge-
neous magnetization. Studying spin-transport phenom-
ena and/or adding thermal gradients delivers a whole
new range of possibilities.24 Furthermore, there is a re-
cently discovered class of materials called topological in-
sulators, in which the quasi-particle momentum is inti-
mately coupled to the spin-degree of freedom and thus
behaves similar to a relativistic Dirac Fermion.25,26 Now,
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adding an additional coupling between spatial and spin
degrees-of-freedom leads to a physically rich system al-
ready subject to various studies.27–31 Considering the ef-
fects of mechanical rotation of these systems32,33 is an-
other interesting application for our formalism.

Approaches that diagonalize band-space in order to
obtain an effective low energy description have been
performed in the case of quasi-free electrons in ferro-
magnetic metals with spatiotemporally varying exchange
field. There, one can come up with a position-dependent
unitary matrix U(r) that diagonalizes spin-space which
maps the problem on that of a free particle in an (fic-
titious) electromagnetic field.34 The converse situation
of coupling between spin and momentum as given by
the spin-orbit interaction can equally be treated by a
momentum-dependent unitary matrix U(p), for example
the Foldy-Wouthuysen transformation in the case of the
relativistic Dirac equation35.

It is clear that the full quantum mechanical problem
of surface Dirac Fermions coupled to a general inhomo-
geneous and time-dependent magnetization texture will
in general be very complex due to the locking of spin and
momentum as well as coupling between spin and spa-
tial degrees of freedom. If one wants to diagonalize spin
space, the unitary transformation has to involve the pair
of canonical operators r and p which is rather difficult
due to non-commutation of r and p. Our approach relies
on the fact that, if r and p are classical variables, such
a unitary transformation is much more simple to find,
and then, we resort to quantum corrections which are
of the order ~. Despite the fact that we are performing
formally an expansion in ~, it does not necessarily need
to be restricted to the semiclassical regime. In fact, as
pointed out later, our actual expansion parameter might
be a different one, depending on the physical system and
the regime under investigation. For example, in the case
of the Dirac theory, as we will discuss thoroughly in sec-
tion VI, the actual scale relevant for our expansion is
the Compton wavelength λc = ~

mc so the resulting Pauli-
Equation still correctly describes the quantum regime for
scalar potentials smooth on the scale of λc.

The outline of this work is as follows: In section II, we
will introduce the unitary transformation that performs
a rotation within band-space such that the Hamiltonian
becomes band-diagonal. Since this transformation is not
uniquely defined, we will discuss the implications of this
additional gauge degree of freedom. This motivates a
description in terms of kinetic variables, which leads to
the appearance of Berry curvatures, which is discussed
in some detail in section III. We will also investigate how
observables change in the course of the diagonalization
and we discuss the electronic spectrum as well as energy
corrections appearing therein. Subsequently, in section
IV we develop a manifest gauge invariant description of
the physical system restricted to a certain band, i.e. we
seek a projected theory without the necessity to refer
back to the original Hamiltonian. To this end, we find
equations of motion for the quasi-probability density, es-

x
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|ξ(r,p, t)|σz

~ξ(r,p, t)~σ

U0(r,p, t)

FIG. 1. Illustration of the band-diagonalization scheme:
Bloch-sphere representation for a simple 2-band model H =
~ξ(r,p, t) · ~σ = ξxσx + ξyσy + ξzσz where the vector is rotated
by U0(r,p, t) such that it aligns along the z-axis at each point
in phase-space.

sentially a quantum Boltzmann equation applicable to
a non-equilibrium scenario. We also find current densi-
ties that obey a conservation law corresponding to Li-
ouville’s theorem in classical mechanics. Our quantum
mechanical equations of motions are formally similar to
the equations of motion for the center-of-mass motion
of a wave-packet and, in fact, the latter is just a spe-
cial case of our formulation. Finally, in section V, we
illustrate how to treat the external electromagnetic field
which can be done in the spirit of a hierarchy of effective
theories. After concluding the discussion of general sys-
tems, in section VI we apply the apparatus developed to
the Dirac equation and readily find a relativistic version
of the Pauli-Hamiltonian, thereby gaining some interest-
ing insights into the structure of the Dirac equation. For
a concise summary of this work, the reader might want
to go to section VI where all central results are being
referenced and find immediate application.

II. THE QUEST FOR A BAND-DIAGONAL
HAMILTONIAN

We now consider a Hamiltonian that consists of N
bands and which is almost diagonal in momentum space
p, but has some additional spatial- and/or temporal vari-
ation imprinted on it. In the usual quantum representa-
tion, it is expressed in terms of the canonical pair of op-
erators [r̂i, p̂j ] = i~δij and additionally carries the N×N
dimensional matrix structure. Prominent examples that
fall into this category are the Dirac equation to be studied
in more detail in section VI as well as the aforementioned
system of surface Dirac fermions coupled to a spatially
dependent magnetization.

For practical reasons, we resort to a description in
terms of single particle Greens functions, or more specif-
ically the inverse thereof, Ξ ≡ i~∂t1N − H(r̂, p̂, t). One
reason is that only Ξ represents the complete equation of
motion, i.e. all kinetic equations involve this operator,
and not H alone, for example, we can generally write
quantum kinetic equations in the compact form

[Ξ, D] = 0 , (1)
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where D represents any dynamical variable like the usual
retarded or Keldysh Greens functions, density of states
or the density matrix for which (1) reduces to the well-
known von Neumann equation

i~∂tρ = [H, ρ] . (2)

The properties of D (the type of Greens function, etc.)
enter through appropriate boundary conditions in our
parameter space. For the example just given, we need to
fix our density matrix at some initial time ρ(t0) = ρ0.

We now transform everything into the Wigner
representation36, so that our Hamiltonian and our ob-
servables are a function of the variables r,p, t and energy
ε so that (see Appendix A for more details)

Ξ(r, t,p, ε) ≡ ε1N −H(r, t,p) . (3)

Multiplication of operators is now performed by virtue of
the Moyal product37,

∗ ≡ exp
i~
2

Λ , (4)

where the differential operator Λ is given by

Λ =
←−
∂r
−→
∂p −

←−
∂t
−→
∂ε −

←−
∂p
−→
∂r +

←−
∂ε
−→
∂t = −←−∂x

−→
∂π +

←−
∂π
−→
∂x
(5)

and we introduced the compact 4-component vector no-
tation x = (t, r) and π = (ε,−p). Note that we always
use x, ∂x = (∂t, ∂r) and Ax = (At,Ar) in contravariant
notation whereas we implicitly assume covariant notation
for the symbols π, ∂π = (∂ε,−∂p) and Aπ = (Aε,−Ap).
Since contraction will always be between pairs of x and
π, there is no need to indicate covariant vectors. This
provides us a symmetric and compact notation in the fol-
lowing treatment. The kinetic equation (1) is straight-
forwardly transformed into the Wigner picture:

[Ξ ∗, D] = 0 . (6)

We are now looking for a unitary matrix U(x,π) that
transforms our initial Hamiltonian Ξ(x,π) into a band-
diagonal Hamiltonian, denoted by Ξ̄(x,π) in the follow-
ing, i.e.

U ∗ U† = U† ∗ U = 1 (7)

U ∗ Ξ ∗ U† = Ξ̄ . (8)

Let us note that upon this transformation, U ∗ ε ∗ U†
can acquire off-diagonal elements when U depends on
time, thus requiring the diagonalization of the combi-
nation Ξ = ε1N − H rather than H alone. This is one
major difference to previous semiclassical schemes14. For
diagonalizations that do not require explicit dependency
on the time parameter, treating H and Ξ is equivalent,
and in the following, we will use the term Hamiltonian
equally for both objects. Note that another advantage of
using Ξ instead of H, which is the form invariance of the
kinetic equation (6) under unitary transformations.

E

EfPi

∆

FIG. 2. Illustration of the bands described by the Hamilto-
nianH and ∆ is a typical energy scale for interband distances.
The projection operator on the i-th band is denoted by Pi.
For low-energy processes around the Fermi energy Ef , only
one or few overlapping bands are relevant and thus contribute
to, e.g transport properties. Corrections due to the influence
of other bands enter as Berry curvatures and are ∝ 1/∆.

In the classical limit, the operators r̂i and p̂j commute,
while in the Wigner representation, the Moyal product
(4) becomes trivial as ~ → 0; after all, in this formula-
tion the Moyal product encodes the non-commutativity
of the canonical variables. Then, we essentially have to
diagonalize a N ×N matrix H, whose elements are func-
tions of r, t and p. We call the unitary matrix associated
with this rotation in band-space U0(r,p, t), so that

U0 ΞU†0 = Ξ̄0 ⇔ U0HU†0 = H̄0 , (9)

and the digonal elements of Ξ̄0 constitute the classical
energies of the N bands described by our initial Hamil-
tonian. At any rate, we assume from now on that we
know the diagonalization matrix U0 analytically. Note
that all our matrices parametrically depend on x and
π, so we essentially diagonalize locally at every point in
2×(3+1)-dimensional parameter space (see Fig. 1 for an
illustration), which becomes meaningful in the semiclas-
sical limit, as position r, momentum p, time t and energy
ε are well-defined in this limit. Also note that U0(r,p, t)
is not uniquely defined which brings up the problem of
gauge-invariance as discussed in detail later.

Furthermore, if the band degrees-of-freedom couple to
only either x or π, then we already found the exact ex-
pression U = U0. For example, treating metallic ferro-
magnets with inhomogeneous magnetization and neglect-
ing spin-orbit interactions23, it just necessary to only di-
agonalize m(r)σ, since the energy dispersion is diagonal
in spin-space. Then, the effect of U is that p acquires an
additional vector potential: p→ p− i~U(∂rU†).

The general situation, where the degrees-of-freedom
couple to both spatial and momentum coordinates si-
multaneously, is much more involved and chances that
we can come up with an exact solution for U(x,π) are
slim. Therefore, we adopt a gradient expansion approach
where we expand the Moyal Product ∗ in powers of ~
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and calculate corrections systematically order by order.
The fact that we are performing formally an expansion
in ~ does not necessarily imply that we are restricted to
the semiclassical regime. Our actual expansion parame-
ter might be a different one, depending on the physical
system and the regime under investigation. Typically,
the expansion parameter is the ratio of the energy as-
sociated with band-dependent spatiotemporal variations
and the interband energy distance ∆, as illustrated in
Fig. 2 and therefore, the larger the band separations (or
weaker coupling), the better the approximation becomes.
To emphasize this fact, we will introduce the notation of
�~ in this article to indicate that the expansion is not
necessarily a semiclassical one.

We assume that we already solved the zeroth order
problem which yields the unitary matrix U0, so that now,
we can introduce gradient corrections to this matrix by
writing

U =
(
1 + Ū1 + Ū2 + . . .

)
U0 , (10)

which describes the matrix that diagonalizes our Hamil-
tonian Ξ to arbitrary order in �~. Ū1 is ∝ �~ and will be
specified explicitly later. As a result of the expansion of
the Moyal product, we obtain the covariant derivatives

∂̄i = U0∂iU†0 = ∂i − iAi (11)

which acquire the Berry connections

Ai ≡ iU0(∂iU†0 ) , (12)

where ∂i is a placeholder for any of the possible deriva-
tives ∂t, ∂ε, ∂r and ∂p. Berry phases, or often called ge-
ometric phases, are omnipresent in modern physics, and
describe phases picked up along a trajectory in curved
geometries. Note that Ai is a N × N matrix which is

Hermitian

A†i = −i(U0∂iU†0 )† = −i(∂iU0)U†0 = iU0(∂iU†0 ) = Ai ,
(13)

where the last step is due to 0 = ∂i(U0U†0 ) = (∂iU0)U†0 +

U0(∂iU†0 ) and the diagonal elements of Ai describe the
usual Berry connections arising from transport within a
certain band. The off-diagonal elements mix contribu-
tions from two bands and thus describe effects due to
inter-band coupling during transport in a certain band.
As we will see later, these inter-band transitions will
give rise to important corrections for example the cor-
rection to the energy that appears to leading order in
�~. Transforming higher order derivatives is straightfor-
ward, except for the additional freedom of exchanging
partial derivatives, which leads to a general relation be-
tween Berry connection matrices Ai. Starting from

U0∂j∂iU†0 = ∂̄j ∂̄i = (∂j − iAj)(∂i − iAi) , (14)

and likewise,

U0∂i∂jU†0 = ∂̄i∂̄j = (∂i − iAi)(∂j − iAj) , (15)

and, if we assume symmetry of second derivatives ∂j∂i =
∂i∂j , the following relation should hold

∂iAj − ∂jAi = i [Ai,Aj ] . (16)

In fact, this identity can be directly shown by using the
definition of A (12) and the exchange of partial deriva-
tives.

Now we have everything at hand to systematically cal-
culate Ξ̄ = Ξ̄0 + Ξ̄1 + Ξ̄2 . . . to arbitrary order in �~ and
to first order, we explicitly obtain the following result for
the transformed expression,

Ξ̄1 = Ū1Ξ̄0 + Ξ̄0Ū†1 −
~
2

{
Aπ, ∂xΞ̄0

}
+

~
2

{
Ax, ∂πΞ̄0

}
+
i~
2

(
AπΞ̄0Ax −AxΞ̄0Aπ

)
. (17)

We obtain an additional constraint for Ūn from the con-
dition of unitarity (7), which to first order in �~ reads

Ū1 + Ū†1 +
i~
2

[Aπ,Ax]
!
= 0 , (18)

and is obtained by substituting 1 for Ξ̄0 into the trans-
formation relation Eq. (17). Since this relation fixes the
Hermitian part of Ū1, we can make the ansatz

Ū1 = − i~
4

[Aπ,Ax] + Y1 ,

with Y1 = −Y†1 assumed to be antihermitian, such that
condition (18) is satisfied. Plugging Ū1 back into Eq.
(17) yields
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Ξ̄1 =
[
Y1, Ξ̄0

]
− ~

2

{
Aπ,

[
∂x − i

2Ax, Ξ̄0

]}
+

~
2

{
Ax,

[
∂π − i

2Aπ, Ξ̄0

]}
+O(�~2) . (19)

We observe that
[
Y1, Ξ̄0

]
is completely off-diagonal and

Y1 is well suited to absorb the off-diagonal part of the
last two terms on the right-hand-side of Eq. (19), in the
following denoted as Ro. After all, the objective is to
diagonalize Ξ̄, so we want the off-diagonal part of Ξ̄1 to
vanish, which is achieved by the condition[

Y1, Ξ̄0

]
= Ro . (20)

The solution can be readily given as

⇒ (Y1)ij =
(Ro)ij
εi − εj

(21)

in the case of a completely diagonalized
(
H̄0

)
ij

= εiδij
and which is antihermitian as desired. Here we explicitly
see that corrections due to Y are inversely proportional to
the separation between bands, and thus are of the same
order as corrections due to Berry phases. In fact, the
commutator on the left side with the Hamiltonian H̄0 is
exactly what also appears in the von Neumann equation
suggesting further that this term describes corrections
due to inter-band dynamics.

We remark that the difference between the diagonaliza-
tion of Ξ andH is merely the modification of Y1 by that it

acquires an additional contribution from the off-diagonal
elements of the Berry connection At. However, this term
is crucial when our transformation U is time-dependent
and only then will the formalism yield consistent results.
Note that the definition (20) does not fix the imaginary
diagonal part of Y1, but without loss of generality, we
can set this part to zero. A non-zero imaginary diago-
nal part corresponds to the linear order expansion of the
gauge phase factors eiχ(x,π) (see (23)). Essentially, the
freedom of choice here can be reduced to the problem of
gauge invariance, to be discussed in the next section.

Yet, we also want to capture the situation of degen-
erate or overlapping bands, so the desired form of Ξ̄ is
in general block-diagonal. To formally express this mat-
ter, we introduce the projectors Pi that define the bands
(see Fig. 2) and that, in the end, we want use for our
effective theory. Of course, the set of Pi has to be spec-
ified together with U0, since the unitary transformation
has a freedom of how we distribute the bands amongst
the entries of our matrix. For example, a natural choice
would be to sort the bands with respect to their ener-
gies. Then, introducing the projected Berry connection

A(d)
π ≡ PdAπPd ≡

∑
i PiAπPi, we can write for the

Hamiltonian that is diagonalized up to first order in �~,

Ξ̄ = Ξ̄0 − ~A(d)
π ∂xΞ̄0 + ~A(d)

x ∂πΞ̄0 +
i~
4
Pd

({
Aπ,

[
Ax, Ξ̄0

]}
−
{
Ax,

[
Aπ, Ξ̄0

]})
Pd . (22)

As compared to expression (19), we can drop two anti-
commutators, since after truncation, A(d) and Ξ̄0 com-
mute. As discussed more thoroughly below, this is even
the case when either Ξ̄0 is block-diagonal and/or the pro-
jected Berry connections are non-Abelian.

Apart from the obvious term Ξ̄0 = ε − H̄0 which can
be understood as the classical energy, the last term of
(22) can be thought of as correction to the energy due
to inter-band transitions and corresponds to the energy
associated with persistent circulating currents, as for ex-
ample the magnetic Zeeman energy in the case of the
Dirac equation (see discussion in section VI). The two
middle terms in (22) appear to be Berry phase correc-
tions to this energy, however, they are not unique in the
sense that they depend on the specific form of U0. The
meaning will become more apparent later, but before, we
address the question of gauge invariance of the effective
Hamiltonian (22).

A. Gauge Invariance

We mentioned previously that there is an additional
degree of freedom in the choice of unitary transformations
U0 and U ′0 which all yield the same diagonal Hamiltonian,

Ξ̄ = U0ΞU†0 = U ′0ΞU ′†0 . These different unitary transfor-
mations are related by local phase factors in 2× (3 + 1)-
dimensional parameter space, so that we can formally
connect two unitary transformations U and U ′ by the
(block-)diagonal N ×N phase matrix

Φ(x,π) =


eiχ1(x,π) 0 0

0 eiχ2(x,π) 0 . . .
0 0 eiχ3(x,π)

...
. . .

 ,

(23)
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where χn(x,π) are arbitrary functions in our parameter
space, which are appropriately termed gauge fields. In
fact, U ′0 = ΦU0 describes a gauge transformation and
can be thought of as a local phase transformation in an
extended phase space which includes time and energy.
This gauge transformation changes the Berry connection
matrices according to

A′k = iU ′0∂kU ′†0 = ΦAkΦ† + iΦ∂kΦ† = ΦAkΦ† + Xk ,
(24)

where the field Xk = iΦ∂kΦ† = ∂kdiag(χ1, χ2, . . . , χN ) is
a (block-)diagonal matrix containing the partial deriva-
tives of the phases. ΦAkΦ† modifies the off-diagonal el-
ements by giving them additional phase-factors, while
the change in diagonal elements is due to Xk. In prin-
ciple, we have to distinguish three different cases here,
the first one being that Ξ̄0 is completely diagonalized
with well-separated bands which corresponds to the sit-
uation just described. However, when we keep part of Ξ̄0

block-diagonal because bands are overlapping or degen-
erate and we can distinguish the bands, i.e. they have a
physical meaning that we want to retain (for example we
have spin-degenerate bands but want to describe spin-

dependent physics) then we have only a U(1) gauge free-
dom within this sub-block. Third and last, if we have M
degenerate bands, i.e. there is aM -dimensional sub block
in Ξ̄0 that is proportional to the unit matrix, and further-
more, we cannot or do not want to distinguish between
the degenerate bands, we have the additional degree of
freedom to rotate within this degenerate space giving us
an additional SU(M) gauge invariance. Contrary to the
first two cases, this last one describes a situation with
the effective description of this M -dimensional subspace
being a non-Abelian gauge theory with the symmetry
group U(1)× SU(M) and consequently, Xk constitutes a
non-Abelian field. We do not differentiate between these
cases explicitly in the following because they are straight-
forwardly treated in our formulas, thus requiring us only
to comment in situations where special care is required.

According to the preceding discussion, the projected
Berry connection matrix is only modified due to X ,

A′(d)
x = PdA′xPd = A(d)

x + Xx , (25)

and the alternative transformation due to U ′0 leads to the
Hamiltonian

Ξ̄′ = U ′ ∗ Ξ ∗ U ′†

= Ξ̄0 −
~
2

{
A′(d)
π , ∂xΞ̄0

}
+

~
2

{
A′(d)
x , ∂πΞ̄0

}
+
i~
4
Pd

({
Aπ,

[
Ax, Ξ̄0

]}
−
{
Ax,

[
Aπ, Ξ̄0

]})
Pd +O(�~2) . (26)

The last term, representing the inter-band transition cor-
rections to the energy, does not change, since the addi-
tional terms due to Xx, Xπ are projected out by Pd and
thus, as a consequence, are absorbed by Y ′1 viz. Ū ′1 which
of course does not need to coincide with Ū1.

However, the other two terms linear in �~ do explic-
itly depend on the gauge, and therefore change the ef-
fective Hamiltonian. Clearly, this shows that the effec-
tive Hamiltonian alone is an incomplete description as
it directly depends on this additional degree of freedom.
Therefore, in order to make any sense out of this, we
have to identify our physical observables, because in the
end, the physical results derived from our effective theory
should not depend on a specific gauge.

III. CANONICAL VERSUS KINETIC
VARIABLES AND GAUGE INVARIANT

DESCRIPTION

The previous section showed us that there is still an
ingredient missing in our effective theories. In order to
investigate this matter, let us study the dynamics of our
system, and construct the effective theory such that the

results obtained within this description are consistent
with what one would obtain in the original frame. The
question is now, whether one can find a manifest gauge
invariant formulation and, as we will explain in the fol-
lowing, it is indeed possible.

A. Parameter transformation to kinetic variables

Let us consider the operator S that describes some
physical observable of our system and, in performing
the rotation that brings our Hamiltonian H into diag-
onal form, it transforms our observable S along with it.
The observable in the rotated frame S̄ is then related to
the original operator S by virtue of relation (48). We
now consider the projected system, i.e. we have in mind
to develop an effective, yet exhaustive description of the
physics taking place within a certain band that is suffi-
ciently well separated from all other bands in order to
treat this band independently to a good approximation.
For the moment, let us assume that our observable S is
band-diagonal, i.e. it is a scalar function of x and π, so
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that the last term in relation (48) vanishes and we have

S̄ = S̄0 −
~
2

{
A(d)
π , ∂xS̄0

}
+

~
2

{
A(d)
x , ∂πS̄0

}
+O(�~2) ,

(27)

where S̄0 = U0SU†0 . Later, we will lift this restriction and
consider a matrix S with general structure in band space,
so that we will also get this additional term, giving rise to
important contributions. However for the moment, (27)
is nothing but a Taylor expansion of S̄0 to first order in
~,

S̄ = S̄0(x− ~A(d)
π ,π + ~A(d)

x ) +O(�~2) , (28)

suggesting the parameter transformation to band pro-
jected kinetic variables X and Π

X(d) = x− ~A(d)
π (29)

Π(d) = π + ~A(d)
x , (30)

so that we can write

S̄ = S̄0(X,Π) +O(�~2) . (31)

We note that to leading order in �~, we can equally write
A(x,π) = A(X,Π)+O(�~), since Berry connection terms
are already linear in �~.
P = p− ~Ar is of course well known in the Hamilton

formulation of particles in an electromagnetic field. In
an analogous way, the position R = r+ ~Ap acquires an
additional Berry connection with its corresponding Berry
curvature, or momentum space magnetic field that gives
rise to the so called anomalous velocity term. Further-
more, E = ε+~At attains a contribution which gives rise
to an electromotive force and appears in the form of an ef-
fective electric field (see for example Ref. 38). The same
is true for the electromagnetic field, where the electric
field can be also rewritten in terms of a time-dependent
phase, effectively changing the gauge. Finally, for rea-
sons of symmetry, one would also have T = t− ~Aε but,
at least in non-interacting Hamiltonian systems, Aε is
zero, since the energy-dependency in Ξ is trivial. How-
ever, the situation is different if one considers an inter-
acting system and uses an effective non-interacting quasi-
particle description, because the self-energy that includes
these interaction in general carries a non-trivial energy-
dependence inherited by the single-particle greens func-
tion and thus by Ξ.39

Let us have a look at the commutator relations between
the kinetic variables,13,15[

R
(d)
i
∗, P

(d)
j

]
= i~

(
δij + Θrp

ji

)
[
R

(d)
i
∗, R

(d)
j

]
= i~εijkB(p)

k (32)[
P

(d)
i
∗, P

(d)
j

]
= i~εijkB(r)

k ,

where we introduced

B(r) = ~
(
∂r ×A(d)

r

)
− i~

(
A(d)
r ×A(d)

r

)
(33)

B(p) = ~
(
∂p ×A(d)

p

)
− i~

(
A(d)
p ×A(d)

p

)
, (34)

which can be considered as a generalized magnetic field
in real space and reciprocal (or momentum) space. Such
non-Abelian Berry curvatures have been treated in Ref.
18. Furthermore,

Θrp

ij = ~

(
∂A(d)

pj

∂ri
− ∂A(d)

ri

∂pj
− i
[
A(d)
ri ,A(d)

pj

])
(35)

As we will also encounter later, the dimensionless tensor
Θrp describes the change in the metric of the phase-space
due to the parameter transformation from canonical to
kinetic variables (29). We can make this more apparent
by relating it to the change in differentials

dRi =
(
δij + ~∂rjApi

)
drj (36)

dPi =
(
δij − ~∂pjAri

)
dpj , (37)

so that

dR·dP = dr (1 + Θrp) dp+O(�~2) . (38)

A more compact way to write these Berry curvatures
is to use the covariant derivative (11), projected onto our

band-diagonal space ∂̄
(d)
x = Pd∂̄xPd, for example

Θrp

ij = ~
(
∂̄

(d)
ti
A(d)
pj
− ∂̄(d)

pj
A(d)
ri

)
. (39)

It is well known that the Berry curvatures are invariant
with respect to gauge transformations, and the commu-
tator is essential as it provides the full SU(M) gauge
invariance in the non-Abelian case.

In accordance with the effective magnetic fields (33)
and (34), we introduced the effective electric fields

E(r) = ~
(
∂rA(d)

t − ∂tA(d)
r − i

[
A(d)
r ,A(d)

t

])
(40)

E(p) = ~
(
∂pA(d)

t − ∂tA(d)
p − i

[
A(d)
p ,A(d)

t

])
, (41)

which shows us indeed that At appears in the role of a
generalized electric potential, however, it can also depend
on momentum P . In the Abelian case (for non-Abelian
fields, it works if we take TrME and TrMB or when we
take the covariant derivatives (11) along with the full ma-
trix structure of the Berry connections), these fictitious
fields obey homogeneous Maxwell equations

∂r/p ·B(r/p) = 0

∂r/p×E (r/p) + ∂tB(r/p) = 0 , (42)

however, in order to determine these fields independently
as in classical electrodynamics, one would need two ad-
ditional inhomogeneous equations containing (effective)
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source terms as inhomogeneities. Note that in general,
B(r/p) and E (r/p) depend on r and p simultaneously. As
in (32), the effective magnetic fields can be also defined
in terms of commutator relations

E(r) =
1

i~

[
E(d) ∗, P (d)

]
E(p) = − 1

i~

[
E(d) ∗, R(d)

]
. (43)

There exists a sum rule for the fictitious fields

TrNB(p) = 0 , TrNB(r) = 0 , TrNΘrp = 0 ,

TrNE(p) = 0 , TrNE(r) = 0 , (44)

which can be found by taking the trace over all bands (we
denote this sum over bands as TrN here and throughout
this work) and making use of the identity (16). This
means that all the effective forces for each band balance
each other in total, or in other words, if all bands are
completely filled (and thus, the density operator ρ is pro-
portional to the unit matrix 1N ), the system does not
experience any net force.

The basis of all calculations within the Wigner repre-
sentation of quantum theory is the Moyal bracket

[
S̄ ∗, T̄

]

between two operators S̄ and T̄ . Now, we want to rewrite
this in terms of kinetic variables only, which is achieved
by transforming the derivatives in the Moyal product to
act on kinetic variables. For concise notation, we in-
troduce the tensor of Berry curvatures as (α, β denote
indices with respect to (t, r,p))

Θα,β = ~
(
∂αA(d)

β − ∂βA(d)
α − i

[
A(d)
α ,A(d)

β

])
, (45)

or explicitly in terms of the fictitious fields used previ-
ously

Θ =

 0 −E(r) −E(p)

E(r) εijkB(r)

k Θrp

E(p) −(Θrp)T εijkB(p)

k

 , (46)

where we recognize the top-left part of Θ as being essen-
tially the electromagnetic field tensor.

Neglecting terms of order O(�~2), we find the explicit
form of the Moyal product after the transformation to
kinetic variables

∗ → exp

{
i~
2

(
−←−∂X

−→
∂Π +

←−
∂Π
−→
∂X

)
+
i~
2

(←−
∂Π
←−
∂R

)
Θ

(−→
∂Π−→
∂R

)}
. (47)

This is a central result of this section, since it shows that
expressing all quantities in terms of kinetic variables al-
lows us to deal solely with manifest gauge invariant ex-
pressions. Essentially, the bottom line of this parameter
transformation is that it changes the metric of the Moyal
product by the appearance of the Berry curvatures Θ.
Immediate consequences of result (47) are the equations

of motions to be discussed in detail in section IV.

B. Transformation of general operators

Let us briefly comment on observables with non-trivial
band matrix structure O(x,π), and their transformation
into the rotated frame, which is performed analogously
to the transformation (19),

Ō = U ∗ O ∗ U† = Ō0 +
[
Y1, Ō0

]
− ~

2

{
Aπ,

[
∂x − i

2Ax, Ō0

]}
+

~
2

{
Ax,

[
∂π − i

2Aπ, Ō0

]}
+O(�~2) , (48)

and the back transformation is given by

U0OU†0 = U0(U† ∗ Ō ∗ U)U†0 = Ō − ~
[
Y1, Ō

]
+

~
2

{
Aπ,

[
∂x − i

2Ax, Ō
]}
− ~

2

{
Ax,

[
∂π − i

2Aπ, Ō
]}

+O(�~2) , (49)

which can be readily checked by plugging Eqn (48) into
the back transformation (49) and dropping terms of order

�~2. Now, treating the diagonal and off-diagonal part of
Ō0 = U0OU†0 = Ō(d)

0 + Ō(o)
0 separately, we find
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Ō(d)
0 (X,Π) +

i~
4
Pd

({
Aπ,

[
Ax, Ō(d)

0

]}
− i~

4

{
Ax,

[
Aπ, Ō(d)

0

]})
Pd +O(�~2) , (50)

and the contribution arising from the off-diagonal part of Ō(o)
0 ,

Pd

([
Y1, Ō(o)

0

]
− ~

2

{
Aπ,

[
∂x − i

2Ax, Ō
(o)
0

]}
+

~
2

{
Ax,

[
∂π − i

2Aπ, Ō
(o)
0

]})
Pd +O(�~2) , (51)

which are both independently gauge invariant. While the
gauge invariance of the former is straightforward to show,
the later requires more work and we have to take into
account that Y1 is modified under a gauge transformation
as

Y1 → Y1 −
i~
4

({χx,Aπ} − {χπ,Ax}) , (52)

along with ∂αŌ → ∂αŌ + i
[
χα, Ō

]
and Aα → Aα + χα.

C. Expectation values in the rotated frame

Let us now go back to the initial question of the dynam-
ics of our system within the effective theory by studying
the expectation values of physical observables, which can
be obtained in the Wigner representation by the integra-
tion over the complete phase space,

〈S〉 =

∫
ddr

∫
ddp

(2π~)d
TrN {ρ(x,π) ∗ S(x,π)} , (53)

and the trace is with respect to the matrix structure.
Note that the factor 1/(2π~)d = 1/hd describes the
proper quantization of the phase space volume and thus
is directly obtained by transforming quantum averages
into the Wigner representation.

If we assume the integration over the whole phase space
to be unbounded and any surface contribution from the
integrand at infinity to vanish, we can perform partial
integrations to show that all the partial derivatives in
the Moyal product ∗ cancel each other, so that we can
equally write

〈S〉 =

∫
ddr

∫
ddp

(2π~)d
TrN {ρ(x,π)S(x,π)} . (54)

By using the cyclic property of the trace and by partial
integration we can easily show that

〈O〉 =

∫
ddr ddp

(2π~)d
TrN

{
U ∗ O ∗ U†

}
=
〈
Ō
〉
, (55)

and we can write

〈S〉 =
〈
S̄
〉

=

∫
ddr

∫
ddp

(2π~)d
TrN

{
ρ̄(x,π)S̄(x,π)

}
.

(56)

In equilibrium, the density operator is given by

ρ(x,π) = fD(ε) δ(Ξ̄) = fD(ε) δ(ε− H̄(x,π)) , (57)

or, if we do not want our results to be energy resolved,
we use directly

ρ(x,p) =

∫
dε fD(ε)δ(ε− H̄(x,π)) , (58)

which gives us the density in phase space and, as we
will discuss later however, it is to be interpreted as a
quasi-probability. An explicitly time-dependent Hamil-
tonian H̄(x,π) has to be treated using (96) instead. If
a band is completely filled, it becomes 1 at the diagonal
element corresponding to that band. If energies are well
separated, and we assume excitations localized in energy
space, we can assume any off-diagonal elements in the
density operator to vanish. In fact, those off-diagonal
entries correspond to coherent excitations that are split
amongst several bands. If the band splitting is suffi-
ciently large, this leads to rapid oscillations subject to
decoherence. In the end, the projection operation defined
by Pd is essentially enforced by the diagonal representa-
tion of the Hamiltonian Ξ̄, and by the density matrix
ρ which gives us only those states that have coherences
within bands (or degenerate/overlapping bands so that,
again, the energy argument applies). In particular, this
is certainly true for low energy transport, where physics
takes place only in the vicinity of the Fermi level.

In order to proceed, let us transform the integration
variables to kinetic ones, and in doing so, we also have
to take into account how the volume element in phase
space changes, which is given by the determinant of the
Jacobian

D−1 ≡ det
∂(R,P )

∂(r,p)
= det (1 + Θrp)

= 1 + TrΘrp +O(�~2) , (59)

or D(X,Π) = 1−TrΘrp +O(�~2). In non-Abelian situa-
tions the non-trivial matrix structure of the Berry curva-
ture will be inherited by D which will be accounted for by
performing the integration before taking the trace, thus
yielding

〈S〉 = TrN

{∫
ddR ddP

(2π~)d
D(X,Π) ρ̄(X,Π)S̄(X,Π)

}
.

(60)
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D describes for example charge accumulation in the case
of a topological insulator with a magnetization structure
induced by ferromagnetic exchange. This effect of the
Berry curvature D on the density of states has been al-
ready discovered by Xiao and coworkers40.

Let us look at this in another way by using result
(49) to transform an observable Ō back into the original
frame. In addition, we let S be a general observable that
can posses an arbitrary matrix structure, so that contrary
to relation (27), the additional dipole term becomes rel-
evant. In the end, we want to establish the connection
with (60), so we are interested in expectation values or
phase-space densities (which then are quasi-probability
distributions as discussed later),

s(x,π) = TrN

(
1

2
{ρ ∗, S}

)
= TrNO . (61)

We identify Ō = 1
2

{
ρ̄ ∗, S̄

}
and plug in the back trans-

formation (49), so that

s(x,π) = TrN
{
Ō + ~Aπ∂xŌ − ~Ax∂πŌ

}
+ i~Tr

{
Ō [Ax,Aπ]

}
+O(�~2) .

According to the discussion above, it is reasonable to as-
sume that our observable is given as a function of the
kinetic variables, i.e. Ō(X,Π) and it is instructive to
treat the inter-band and the intra-band contributions
separately by splitting Ō = PdŌPd + Ō(o) ≡ Ō(d) + Ō(o)

and likewise for S̄ = S̄(d) + S̄(o), so that the contribution
from the diagonal part becomes41

s(d)(x,π) =

TrN

{
D(x,π) Ō(d)(X + ~A(d)

π ,Π− ~A(d)
x )
}

+O(�~2) , (62)

which basically undoes the variable transformation so
that we go back to the canonical pair of variables and
can write

s(d)(x,π) = TrN

{
ρ̄(x,π) D(x,π) S̄(d)(x,π)

}
+O(�~2) .

(63)

In addition, we rewrote the last term with the help of
identity (16), i [Ax,Aπ] = ∂xAπ − ∂πAx and, according
to our previous discussion, we have Θεt = 0, as U0 was as-
sumed to not explicitly depend on the energy parameter
so we can replace this term with TrΘrp. This contribu-
tion gives rise to the correction factor D(x,π) that we
already encountered before, and thus, the last result is
consistent with relation (60).

The implications of the diagonal part of S̄ can be
summarized as undoing the parameter transformation
together with the appearance of the correction factor
D(x,p) which locally changes the density. However, it is
not always possible to ignore the off-diagonal part of the
observable S̄, one prominent example will be the current

density (see Eq. 84). With a series of straightforward
manipulations involving the cyclic property of the trace
along with identity (16), we eventually arrive at

s(o)(x,π) = ∂xTrN ρ̄
~
2

{
Aπ, S̄(o)

}
− ∂πTrN ρ̄

~
2

{
Ax, S̄(o)

}
+O(�~2) , (64)

so that both contributions to the expectation value, (63)
and (64) together read

s = TrN ρ̄ DS̄(d) + ∂xTrN ρ̄
~
2

{
Aπ, S̄(o)

}
− ∂πTrN ρ̄

~
2

{
Ax, S̄(o)

}
+O(�~2) . (65)

The importance of these last two terms will become
clearer in section IV A when discussing the kinetic equa-
tions of the effective theory.

To summarize this section, we have seen that when
we use the kinetic terms X and Π as basic quantities
for our observables, we end up with expressions that are
manifest gauge invariant (c.f. Eqns (47) and (60)). In
fact, these kinetic variables appear consistently in virtu-
ally all equations of physical relevance, and moreover, it
is exactly these quantities that we obtain, if we transform
the canonical variables into the rotated frame,

X = U ∗ x ∗ U† = x− i~U ∗ ∂πU†

Π = U ∗ π ∗ U† = π + i~U ∗ ∂xU† .

D. Is the diagonalization transformation canonical?

Before continuing, we would like to point out that with-
out the projection, X and Π still obey the canonical
commutation relations, which can be easily seen by not-
ing that the set of unprojected Berry curvatures vanishes
according to identity (16) (for example, (34) or (41) with
A(d) replaced by the N×N Berry connection A). This is
actually not surprising, since then our unitary matrix U0

is connected by SU(N) gauge invariance to the identity
transformation which clearly has vanishing Berry curva-
ture. Or in other words, U0 itself is a SU(N) gauge-
transformation which naturally keeps the full SU(N)
Berry curvature invariant. This implies that our uni-
tary transformation is a canonical one, however, since X
and Π now posses a complicated matrix structure in the
N -dimensional band space, they no longer commute with
non-trivial matrices within this band space. For example,
in a simple particle-hole symmetric two-band model

H = E(p) · σ + V (r)12 , (66)

our band-diagonalized Hamiltonian has the form

H̄ = E(p)σz + V (R)12 , (67)
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while R = r + ~Ap acquires a 2 × 2 Berry connection
matrix, so that [Ri,Rj ] = 0 = [P i,P j ] and [Ri,P j ] =
i~δij . Instead, the commutator [R, σz] = ~ [Ap, σz] 6= 0
now encodes the complicated dynamics of inter-band
scattering, making the problem as a whole not easier
tractable so, in the general case, the only way out is the
truncation scheme. And only due to the restriction of
the Berry connection matrices into a certain sub-space do
the corresponding Berry curvatures yield a non-vanishing
value.

E. Electronic Spectrum and Magnetic Dipole
Energy

In course of the preceding discussion, we have seen
that rewriting the Hamiltonian in terms of kinetic vari-
ables would render it gauge invariant. However, in or-
der to calculate the electronic spectrum, one essentially
has to fully diagonalize it, and which has to be done in
terms of canonical variables. But it turns out that this
remaining gauge-dependence of the Hamiltonian in the
canonical representation would only affect the wavefunc-
tions or quantities that build upon them like the retarded
Greens function or the density operator. These objects
will acquire local phase-factors that depend on x and p
and we will illustrate this point later by explicitly study-
ing the situation in the case of the Dirac equation. At
this time, we can conclude that the electronic spectrum
of the system is also gauge-independent.

Let us briefly discuss the last term of the transforma-
tion equations like (22), and that we ignored by now,

H̄M =
i~
4
Pd

({
Ar,

[
Ap, H̄0

]
−
{
Ap,

[
Ar, H̄0

]}})
Pd ,

(68)

which gives rise to corrections due to virtual transitions
to other bands. The term ”magnetic” comes from the
fact that H̄M corresponds to the energy of a magnetic
dipole in an external magnetic field, where the magnetic
dipole is an intrinsic property of the band. For exam-
ple, in the case of the Dirac equation, this term becomes
essentially the magnetic Zeeman term, though in other
scenarios, one obtains generalizations thereof, and even
in the absence of external magnetic fields, H̄M can be
non-zero.

Since we will encounter terms like in H̄M later, let
us define the quantities (α, β are any combinations of
(t, r,p))

Ωα,β =
i~
2
Pd

{
Aα,

[
Aβ , H̄0

]}
Pd , (69)

which is an antisymmetric tensor in (t, r,p)-space, and in
addition, it is a band-diagonal matrix, or block diagonal
according to the structure defined by the projector Pd.

The explicit structure of Ω is

Ω =

 0 −Ωtr −Ωtp

Ωtr εijkΩrr

k Ωrp

Ωtp −(Ωrp)T εijkΩpp

k

 , (70)

which has been defined in analogy to the Berry curvatures
Θ given in (46).

Now, we can express the energy term as

H̄M = TrΩrp , (71)

where the trace is only with respect to coordinates, and
not band indices, and we write explicitly

Ωrp

ij =
i~
2
Pd

{
Ari ,

[
Apj , H̄0

]}
Pd . (72)

As will become more apparent later, terms involving the
Ω tensor are related to circular currents and give rise to
important terms that should not be ignored.

For the sake of completeness, and in order to estab-
lish the link to other treatments in literature (for ex-
ample Ref. 3 and references therein), let us express
our quantities Θ and Ω in terms of Bloch functions
(Ap)ij = 〈ui|i∂p|uj〉, with the Bloch band indices i and
j. We start by introducing the gauge-invariant transition
elements

Γ
(α,β)
ij ≡ −2~={(Aα)ij(Aβ)ji}

= −2~={〈ui|i∂α|uj〉 〈uj |i∂β |ui〉} , (73)

which are anti-Hermitian, Γ
(α,β)
ij = −Γ

(α,β)
ji due to the

Hermiticity of A and, as the name suggests, they describe
corrections due to virtual transitions between band i and
j. Then the Berry curvatures projected onto band i can
be expressed as

Θαβ = ~(∂αA(d)
β − ∂βA(d)

α )ii =
∑
j

Γ
(α,β)
ij , (74)

and one can interpret the Berry connection as being cor-
rections to the kinetic variables x,π due to virtual tran-
sitions into all other bands j. The sum rule (44) is then
a direct consequence of the anti-Hermiticity of Γ. In the
same spirit, the dipole terms projected on Bloch band i
read

Ωαβ =
1

2

∑
j

(εi − εj) Γ
(α,β)
ij , (75)

where the energies are εi ≡ (H̄0)ii.
As might be apparent from the above expressions,

there exists a direct link between Θ and Ω in the case of a
two-level system, and which we establish in the following.
First, a general diagonal 2-level Hamiltonian H̄0 can be
divided into a symmetric part ∝ 12 which consequently
commutates out in expression (69), and an antisymmet-
ric part ∝ σz responsible for a finite contribution. After
some simple algebra, we find Tr2σzΩ = 0 which implies
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that Ω is band diagonal, and the two bands get the same
contribution, in particular the magnetic dipole energy
is the same for the two bands. The diagonal part is ob-
tained by taking the trace and using its cyclic properties,

Tr2Ωα,β = i~Tr2H̄0 [Aα,Aβ ]

= ~Tr2H̄0(∂αA(d)
β − ∂βA(d)

α ) = Tr2

(
H̄0Θα,β

)
,

(76)

where in the last two steps, we used the identity (16)
along with definition (74) to replace the commutator. We
can finally cast the result into the form

Ω =
1

2
Tr2

(
H̄0Θ

)
12 , (77)

where in this expression, the diagonal contribution of H̄0

drops out because of the sum rule Tr2Θ = 0.

In particular, we can express the magnetic dipole en-
ergy as

H̄M =
1

2
Tr2

(
H̄0TrΘrp

)
12 , (78)

where TrΘrp ≡ ∑
i Θrp

ii , whereas Tr2 denotes the trace
with respect to the two level band space.

IV. EQUATIONS OF MOTION

We are now interested in the dynamics of the sys-
tems, especially in a consistent effective descriptions of
the physics within a certain band.

A. Quasi-probability distributions and currents

Within the Wigner framework, the basic quantity is
the quasi-probability distribution ρ(r,p), while the usual
momentum and position probability distributions can be
generally defined as marginals

ρ(r) =

∫
ddp

(2π~)d
ρ(p, r) ,

ρ(p) =

∫
ddr

(2π~)d
ρ(p, r) ,

and they are linked to the probability interpretation of
quantum mechanics, i.e. ρ(r) = |ψ(r)|2 and ρ(p) =

|ψ(p)|2. In the rotated frame however, one has to ex-
press them in terms of kinetic variables instead, in order
to obtain gauge invariant results.

Now the goal which we want pursue in the following is
to find proper quantities in the rotated frame that lead
to a consistent physical description when projected onto
a certain band.

Since the velocity operator is given by

dR

dt
=

1

i~
[
Ξ̄ ?, R

]
,

and inspired by result (65) for the expectation values in
the rotated frame, we define the quasi-probability density
n, current density j and force density q as follows

n(R,P , t) ≡ TrN {ρ̄ D} , (79)

j(R,P , t) ≡ TrN

{
ρ̄ D

dR

dt

}
−∇R×TrN ρ̄Ω

pp −∇P ·TrN ρ̄Ωrp , (80)

q(R,P , t) ≡ TrN

{
ρ̄ D

dP

dt

}
−∇P×TrN ρ̄Ω

rr + ∇R ·TrN ρ̄(Ωrp)T , (81)

where we used that Ωpr = −(Ωrp)T . These densities obey
a conservation law in phase space, or Liouville’s theorem
that states

∂tn(R,P , t) + ∇R j(R,P , t) + ∇P q(R,P , t) = 0 .
(82)

We substitute the definitions (79)-(81) into Liouville’s
theorem and establish the identity (82) after some alge-
bra, using the kinetic equation (94) for ρ̄ and the equality
of second partial derivatives and dropping terms of order

O(~2). Furthermore, we need to use the following iden-
tities between Berry curvatures

∂tD −∇RE(p) + ∇PE(r) = 0 ,

∂RiD + ∂RkΘrp

ik − (∇P×B(r))i = 0 ,

−∂PiD − ∂PkΘrp

ki − (∇R×B(p))i = 0 , (83)

which can be readily shown by plugging in the defini-
tions (33)-(35), (40) and (41). This result strongly em-
phasizes the importance of including the correction factor
D(R,P , t) into the expectation values.



13

Here, it is important to realize that the current matri-
ces have an off-diagonal structure that one has to take
into account in the light of expression (65) and which
eventually leads to the last two terms in the current den-
sities (80) and (81), and constitute divergence-free, or
circular currents. Explicitly for the 4-component current,
this off-diagonal part takes the form(

dX

dt

)
o

= −i
[
H̄0,Aπ

]
(84)

and is completely expressed in terms of quantities of the
rotated frame and arises due to the off-diagonal elements
of the Berry connection matrix.

Just like the Wigner function is a quasi-probability and
can be given physical sense only after taking expecta-
tion values, the same applies to n, j and q. In partic-
ular, physical meaning can be given only to quantities
like n(R) or j(R). This is related to Heisenberg’s un-
certainty which states that momentum and position un-
certainty have to be larger than Plank’s constant ~, i.e.
∆P∆R & ~. The same is true for the conjugate variables

time and energy.

Liouville’s theorem constitutes a conservation law for
the quasi-probability densities, and one can for example
integrate (82) over all momenta in order to find a conti-
nuity equation for the probability densities of the particle
and current densities,

∂tn(R, t) + ∇Rj(R, t) = −
∮
∂V

dd−1P q(R,P , t) ,

(85)

where the closed surface integral on the right-hand side
has been obtained by virtue of Gauss’s theorem, and it
vanishes if we assume that there is no net momentum
current flow through the surface at infinity. Explicitly,
the particle density is

n(R, t) =

∫
ddP

(2π~)d
TrN (ρ̄ D) , (86)

and likewise for the current density,

j(R, t) =

∫
ddP

(2π~)d
TrN

(
ρ̄ D

dR

dt

)
−∇R×

∫
ddP

(2π~)d
TrN ρ̄Ω

pp −
∮

dd−1SP
(2π~)d

TrN ρ̄Ωrp , (87)

while the previous discussion has shown that these defini-
tions are in fact meaningful physical quantities and con-
stitute the central result of this section. We will see in-
teresting implications of the additional dipole term in the
current when studying the examples of the Dirac equa-

tion.

For the sake of completeness, we use result (65) to
define densities corresponding to the physical quantity S
in the diagonalized frame

S(R, t) ≡
∫

ddP

(2π~)d
TrN

(
ρ̄ DS̄ −∇R ρ̄

~
2

{
AP , S̄(o)

})
+

∮
dd−1P

(2π~)d
TrN ρ̄

~
2

{
AR, S̄(o)

}
, (88)

and likewise for S(P ). This expression is consistent
with the definition of a density operator δ(r−r0)S(r,p)
which, when transformed into the rotated frame yields
the given result. Furthermore, all the given expressions
can still explicitly depend on energy via the gauge in-
variant parameter E, which however does not affect the
discussion here.

B. Operator equations of motion

In order to calculate the densities (80) and (81), we
need to evaluate the equations of motion for kinetic posi-
tion R and momentum P . Using this result and (47), we

can now immediately write down the equations of motion

dR

dt
=

1

i~
[
Ξ̄ ∗, R

]
=
∂H̄
∂P

(1 + Θrp)− E(p) +
∂H̄
∂R
×B(p)

(89)

dP

dt
=

1

i~
[
Ξ̄ ∗, P

]
= − (1 + Θrp)

∂H̄
∂R

+ E(r)+
∂H̄
∂P
×B(r) ,

(90)

or, to leading order in �~,

dR

dt
(1−Θrp) =

∂H̄
∂P
− E(p) − dP

dt
×B(p) (91)

(1−Θrp)
dP

dt
= −∂H̄

∂R
+ E(r) +

dR

dt
×B(r) , (92)
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where we see that the effect of Θrp is related to a change
of phase-space in the course of the diagonalization trans-
formation. The beauty of this result is the symmetry
in which effective magnetic and electric fields appear in
these equations.

We are now performing a quantum average of the ki-
netic equations (91) and (92) with respect to a density
matrix that is peaked around a certain value P c and Rc,
which in effect corresponds to a Gaussian wave-packet
that is well beyond the limits of the Heisenberg uncer-
tainty. Then our equations of motion (91) and (92) es-
sentially become classical ones with all kinetic variables
replaced by Pc and Rc. These equations of motion for the
center of mass coordinates of a wave packet have been di-
rectly obtained by Sundaram and coworkers11. The cir-
cular current terms in (80) and (81) vanish for the wave
packet, which is to be expected physically, since this de-
scription reduces the electron to a point particle with
coordinates P c and Rc, and which does not posses any
internal motion described by the circular currents. Math-

ematically, after integration over the whole phase-space,
one can rewrite them in terms of surface integrals which
vanish for the well-localized wave-packet.

C. Non-equilibrium description

Now, it is just a matter of finding the density ma-
trix ρ̄(R,P , t) in order to explicitly calculate anything
within this framework, in particular, when one is inter-
ested in non-equilibrium phenomena. One way to pro-
ceed is within Keldysh formalism and to consider the
kinetic equation for the lesser Greens function36,[

Ξ ∗, G<
]

= 0 , (93)

which, after transformation into the rotated frame, can
be evaluated to leading order correction in �~ by using
(47) which by virtue of (89) and (90) can be recast into

[
∂t +

dR

dt
∇R +

dP

dt
∇P +

(
∂H̄
∂t

+ E(r)
∂H̄
∂P
− E(p)

∂H̄
∂R

)
∂E

]
Ḡ< = 0 . (94)

When we integrate the lesser Greens function over en-
ergy, we obtain the density matrix

ρ̄(R,P , t) =

∫
dE

2π
Ḡ<(X,Π) , (95)

and, since the terms proportional to ∂EḠ< vanish after
integrating (94) over all energies, we are left with the
following differential equation for the density matrix,

(
∂t +

dR

dt
∇R +

dP

dt
∇P

)
ρ̄(R,P , t) = 0 , (96)

which is nothing but a Boltzmann equation including
quantum corrections in terms of Berry curvatures. In
the end, it is quite analogous to the quantum Boltzmann
equation along with the gradient expansion we used Ref.
42. Of course, the major difference is the absence of the
collision integral in the present formulation, however it is
possible to include it here as well, which is however left
for future investigations. Of course, ρ̄ can additionally in-
clude discrete quantum degrees of freedom like the spin,
which means that our rotated frame is block-diagonal and
so is ρ̄.

We now show how to obtain the distribution function,
when it is known at some initial time, ρ̄(R,P , t = 0). In
general, these problems can be formulated in terms of an
inhomogeneous Boltzmann equation with a source term

S(R,P , t),(
∂t +

dR

dt
∇R +

dP

dt
∇P

)
ρ̄(R,P , t) = S(R,P , t) .

(97)

To proceed in the usual way, we define the Greens func-
tion Gc,(

∂t +
dR

dt
∇R +

dP

dt
∇P

)
Gc(R,P , t,R′,P ′, t′)

= δ(t− t′)δ(R−R′)δ(P − P ′) , (98)

for which we find the general solution

Gc(R,P , t,R′,P ′, t′)

= Θ(t− t′) δ(R−Rc(t)) δ(P − P c(t)) , (99)

where Θ is the Heaviside step function, and Rc(t) and
P c(t) describe the classical orbits which obey the equa-
tions of motion

Ṙc =
dR

dt
Rc(t′) = R′ ,

Ṗ c =
dP

dt
P c(t′) = P ′ .

This solution describes ballistic trajectories given by the
kinetic equations (89) and (90) and which including the
effects of the Berry curvatures, while the particle being
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initially at phase space coordinates (R′,P ′, t′). For ex-
ample, in the absence of any spatially dependent poten-
tial, one simplyhas straight lines described by the Greens
function Gc = Θ(t−t0) δ(R−V (t−t0)) δ(P −P ′), where

V = ∂H̄0

∂P is the group velocity. This is analogous to
other quasiclassical equations like the Eilenberger equa-
tion which can be also described in terms of classical
trajectories36,43.

Now, the solution is readily given by

ρ̄(R,P , t) =

∫ +∞

−∞
dt′
∫

ddR′
∫

ddP ′ Gc(R,P , t,R′,P ′, t′) S(R′,P ′, t′) , (100)

where, due to the delta functions in Gc, we get con-
tributions only from trajectories which end at (R,P )
at time t. Since the trajectory is well defined by the
given pair (R,P ) already, we can find all corresponding
points (R′,P ′) by going back in time so we can eventu-
ally rewrite the above integral as

ρ̄(R,P , t) =

∫ t

−∞
dt′ S(Rc(t′),P c(t′), t′) , (101)

where now, the classical orbits are defined such that its
position in phase space at time t is Rc(t) = R and
P c(t) = P .

Let us now go back to the original initial value prob-
lem which we can easily solve by using the source term
δ(t)ρ̄(R,P , t = 0), so that the general solution reads

ρ̄(R,P , t) = Θ(t) ρ̄(R′c(0),P ′c(0), 0) , (102)

which has the desired properties for t ≥ 0. This indeed
corresponds to a motion in phase space as an incompress-
ible fluid, as stated by Liouville’s theorem.

D. Polarization

Another way to interpret the kinetic variables is ob-
tained by considering the electrical polarization which
we pursue according to the pioneering work of Vanderbilt
and coworkers6. They derive the polarization in terms of
adiabatic transport, where some perturbation that leads
to a polarization in the crystal is adiabatically turned on.
The current due to adiabatic transport is44

j =

∫
ddr ddp

(2π~)d
TrN

dR

dt
= −

∫
BZ

ddp

(2π~)d
TrNE(p) ,

(103)

where integration is only within the Brillouin zone. The
electric polarization is then obtained by integrating over
time,

P(R) =

∫
dt j(R, t) . (104)

The definition as an adiabatic transport process is nec-
essary in order to obtain a truly gauge invariant result6.

In the periodic gauge however3, it is nevertheless possible
to construct

P =

∫
ddp

(2π~)d
Ap , (105)

but in the general case, it is required to consider the full
Berry connection structure (including in particular At)
in order to obtain the correct result for the polarization.
In the same spirit, one could define a polarization in mo-
mentum space which can be thought of as a Doppler shift
in the rotated frame or also termed anomalous velocity.

In this sense, one could loosely interpret these Berry
connections as shifts that the canonical variables acquire
and which depend on full phase space, albeit these shifts
are not directly physically observable, only when one does
an integration with respect to either the position or the
momentum variable one obtains the observable electric
polarization in real space or reciprocal space, respec-
tively. This is analogous to the quasi-probability dis-
tribution ρ(r,p) in the Wigner picture, which can be
given only physical interpretation as probability density
when integrated either over whole momentum space or
real space. However, if we try to transfer this idea, we
still will have a shift that depends on the frame, i.e. it is
still not gauge invariant. Only for a very specific gauge,
one obtains the physical polarization.

E. Bulk-boundary correspondence

It is interesting to note that the circular current term

−∇R×
∫

ddP

(2π~)d
TrN ρ̄Ω

pp (106)

appearing in the current density (87) is a manifestation
of the bulk-boundary correspondence.45 In the homoge-
neous bulk, these circular currents compensate each other
and yield zero, but at the edge of the system, there will
be residual currents flowing on the surface. Due to the
circular nature of these edge currents, the associated edge
states are also of topological nature. Therefore, a non-
trivial (bulk) value of Ωpp indicates a topological state of
matter.



16

V. HIERARCHY OF EFFECTIVE THEORIES –
INCLUSION OF THE ELECTROMAGNETIC

FIELD

In many cases, one starts from an effective theory
which requires dealing with gauge invariant momentum
and/or position operators in the original frame. This
might happen if one uses an effective theory derived
from a more comprehensive theory; or more commonly,
one simply wishes to include an external electromagnetic
field. Qualitatively, one expects no new concepts or phe-
nomena to emerge in effective theories at a lower level
in the hierarchy, as one could also go directly from the
topmost theory to the lowest in a single step.

Here, our focus lies on the combined effect of the elec-
tromagnetic field and the Berry connections emerging
from the diagonalization of a band Hamiltonian. In this
case, we are starting from a theory which is gauge invari-
ant in real space, thus formulated in terms of the mini-
mally coupled momentum p−qA(x). Since all our deriva-
tions so far are only linear in ~, we treat the electromag-
netic vector potential qA (q is the charge of the particle,
so we usually have q = −e) on a different level than ~A,
thus formally taking ~ and q as independent expansion
parameters. To begin with, we have the usual canonical
pair x and π and the kinetic pair x and π+qA(x), where
A = (−φ,Ar) is the usual 4-component vector potential
of the electromagnetic field. In the following, we denote
B(r, t) = ∇r×Ar and E(r, t) = −∂tAr +∇rA0 (not to
be confused with the energy E) as the external electric
and magnetic fields.

The Hamiltonian is specified as H(x,p− qAr(x)) and
is diagonalized by an appropriate unitary matrix U(x,p−
qAr(x)), so that in the diagonalized frame we arrive at
the kinetic pair of variables

X = x− ~Aπ(x,p− qAr)

Π = π + qA(X) + ~Ax(x,p− qAr) . (107)

Since derivatives now also act on Ar, we have

Axk = AXk − q(∂XkAl)APl (108)

so that we can write more explicitly

R = r + ~AP (109)

E = ε− qφ+ ~AR + ~qE ·AP (110)

P = p− qAr(x)− ~AR − ~qB ×AP . (111)

Note that AX , as well as AP still carry the full gauge
invariant momentum p−qAr and for simplicity, all Berry
connections involved are assumed to be Abelian.

The fictitious fields in the presence of an electromag-
netic field can be derived by plugging these kinetic vari-
ables into the commutator relations (32) and (43) and
keeping all terms up to order O(~) and quadratic in
the fields O(q2). In order to obtain manifest gauge in-
variant results, we express everything in terms of ki-
netic variables by using ∂xj = ∂Xj − q(∂XjAl)∂Pl and
E(X) = E(x) + (AP ∂r)E(x). Denoting primed quanti-
ties as the Berry curvatures describing the combined ef-
fect of external electromagnetic and the diagonalization,
we can summarize the results as

B′(r) = qB(R) + B(r) + q [Tr(Θrp)B −BΘrp] + q2 (B(p) ·B)B (112)

B′(p) = B(p) (113)

E ′(r) = qE(X) + E(r) + qΘrpE + qB×E(p) + q2B×(E×B(p)) (114)

E ′(p) = E(p) + qE×B(p) (115)

Θ′rpij = Θrp

ij + q
[
(B(p) ·B) δij − B(p)

i Bj
]
. (116)

Here, Unprimed quantities B, E, Θ correspond to the
Berry curvatures of the system in the diagonalized frame
in absence of the external electromagnetic field qA.

It is important to note that these results have to be
substituted into the equations of motion (89), (90) and
not (91), (92) since the latter has been obtained by drop-
ping terms beyond leading order corrections in Berry cur-
vatures, whereas our results for the fictitious fields are
in fact higher order in Berry connections (q2~ actually
already corresponds to terms of third order in the expan-
sion of the Moyal product).

The term E×B(p) of E ′(p) is the anomalous velocity
term that is for example responsible for the quantum Hall

effect, since the Berry curvature B(p) becomes non-trivial
when the system is in the Quantum Hall state. Similarly,
in systems with spin-orbit interactions, this term consti-
tutes the intrinsic contribution to the anomalous Hall
effect. The reciprocal effect thereof is described by the
term qB×E(p), where a external magnetic field trans-
forms a momentum space electric field into a real-space
one.

Θ′rp gets modified by a magnetic field term that resem-
bles a dipole interaction between a real-space and the mo-
mentum space magnetic field. In fact, as we have seen
in result (78), and as we will see explicitly at the end
of this section, Θ′rp is directly related to the magnetic
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dipole energy in the case of a two-level model, and thus,
it is the magnetic field term in Θ′rp which will give rise
to the Zeeman energy in the Hamiltonian. Furthermore,
the term quadratic in the fields can be absorbed by Θ′rp,

i.e. fictitious electric field can be recast into

E ′(r) = qE + E(r) + qΘ′rpE + qB×E(p) . (117)

From this expression, we see that the external electric
field enters effectively as q(1 + Θ′rp)E, and the electric
field acting on the system is thus renormalized. An anal-
ogous renormalization of the external magnetic field ap-
pears also in the result for B′(r).

The modification of the transformation rule (48) for
arbitrary observables is easily found by virtue of (108),

Ō′ = Ō +
[
Y ′1 − Y1, Ō0

]
+

~
2
qE
{
AP , ∂EŌ0

}
− εijkqBk

~
2

{
AP i ,

[
∂P j − i

2AP j , Ō0

]}
, (118)

where again, primed symbols represent quantities in pres-
ence of an external magnetic field. In particular, eval-
uating the above expression for the Hamiltonian, we
find for the magnetization energy in the rotated frame
H̄M = TrΩ′rp (see Eq. (71)), where

Ω′rpij = Ωrp

ij + q [(Ωpp ·B) δij − Ωpp

i Bj ] . (119)

Notice the resemblance between this expression and
(116); in fact, it turns out we obtain Ω′ by substituting
the Berry curvatures with the analogue quantities of Ω in
results (112)-(116). In two dimensions, Θ′rp33 is zero,46 and
thus TrΘ′rp = TrΘrp + qB ·B(p), i.e. a factor 2 less than
in the 3D case, and likewise, in 1D TrΘ′rp = TrΘrp. Nev-
ertheless, we see that the magnetic field couples in the
shape of a dipole term B ·B(p) to the momentum space
magnetic field B(p). Since the magnetic dipole energy is
already of order �~, we can equally writeB(X) andB(x),
since substituting canonical and kinetic variables affects
only higher orders in �~.

VI. THE DIRAC EQUATION - AN
ALTERNATIVE PERSPECTIVE ON DERIVING

THE PAULI-HAMILTONIAN

The goal of this section is illustrate our formalism,
while at the same time serving as a concise summary of
the framework, essentially making use of all the central
results. The Dirac equation and its descendants like the
Pauli Hamiltonian are the most fundamental equations in
condensed matter physics, nevertheless, we present some
interesting insight into the physics revealed by this rather
simple equation.

We consider the Dirac Hamiltonian in the presence of
a scalar potential and minimally coupled to the magnetic
field47,

H = cα(p− qA) +mc2β + V (x)14 , (120)

where m is the rest mass and p the momentum of the
electron. As

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
, (121)

H acts on the 4-dimensional Dirac Spinor and thus can
be considered as a 4-band model.

The Foldy-Wouthuysen transformation35 which brings
the Dirac equation into diagonal form is described by the
unitary matrix

U0 =
(EP +mc2)14 + cβαP√

EP (EP +mc2)
, (122)

where EP = c
√
P 2 +m2c2 is the relativistic energy of the

electron with gauge invariant momentum P . Performing,
as outlined before (cf. Eq. (22)), the diagonalization with
respect to U0, we arrive at

H̄ = U ∗H ∗ U† = EPσ0τz

+
(
V (r)σ0 + ~(∂rV )A(d)

P + qEPB ·B(p)

)
τ0 . (123)

The 2 × 2-matrices τi denote the Pauli matrices in
electron-positron space, while σi describes the usual spin
degree of freedom. The magnetic dipole term is given ac-
cording to (119) in terms of an interaction term between
magnetic field B = ∇×A and the fictitious momen-
tum space magnetic field B(p), to be specified below. We
note that in this case, all the correction terms are equal
for both electron and positron bands, albeit the term
positron becomes only meaningful when all negative en-
ergy states are completely occupied.

The full matrix structure of the Berry connection, split

into diagonal and off-diagonal parts, i.e. AP = A(d)
P τ0 +
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A(o)
P τy, reads

A(d)
P =

c2P×σ
2EP (EP +mc2)

≈ λc
4~
P×σ
mc

, (124)

A(o)
P =

cσ

2EP
− P (Pσ) c3

2E2
P (EP +mc2)

≈ λc
2~
σ , (125)

where in the last step, we are dropping terms of order
O(p/mc)2.

The kinetic variables for both positive and negative
energy states read explicitly

P = p− qA(r)− q~B×A(d)
P ,

R = r + ~A(d)
P ,

so that the Berry curvature (34) is also equal for both
bands, and yields

B(p) = −~mc4

2E3
P

σ − P (P ·σ) ~c4

2E3
P (EP +mc2)

≈ −λ
2
c

2~
σ , (126)

where again, in the last step we took the non-relativistic
limit. Of course, the general expressions are still valid
for arbitrary velocities, for example, in the opposite, the
ultra-relativistic limit, we find

B(p) p�mc→ −P (P ·σ)~
2P 4

.

Using the results (112) - (116), we immediately find
E(r) = 0 = E(p) and

B(r) = qB(R) + q2 (B(p) ·B)B

Θrp

ij = q
[
(B(p) ·B) δij − B(p)

i Bj
]
, (127)

where here, we used E(R) = 0, since we are already
using the scalar potential V (R).

In terms of kinetic variables, the Hamiltonian H̄ can
now be rewritten (let us restrict ourselves to the positive
energy branch, whose excitations correspond to electrons,
so that q = −e), neglecting terms of order �~2,

H̄ = EP + V (R) + qEPB(R)·B(p) , (128)

so that in view of this, the spin-orbit interaction that ap-
pears in the rotated frame can be reinterpreted as being
a result of the shift the kinetic position operator attains.
However, we should keep in mind that this shift is gauge
dependent and becomes physically meaningful only when
integrated over the whole momentum space (which then
is equivalent to the polarization) or in the form of the
Berry curvature, viz the momentum space magnetic field
appearing in the kinetic equations. In the non-relativistic
limit, the magnetic dipole energy is just the usual Zee-
man term (using (71) and (72))

H̄M = −µs ·B , (129)

where we introduced the magnetic moment of the elec-
tron spin, µs = −gsµBσ/2 = −µBσ, and we assume

a g-factor of 2 within the validity of the Dirac theory
without quantum corrections from the radiative field, and
µB = e~

2m is the Bohr magneton.
Using results (89) and (90) together with (127) and

(128), we obtain the operator equations of motion of a rel-
ativistic electron which moves in an electromagnetic field
that is smooth on the scale of the Compton wavelength
λc. We do not explicitly write the expression here, how-
ever, our result is consistent with the work of Bliokh48.

For the sake of our discussion, we will nevertheless
specify the equations of motion in absence of a magnetic
field,

dR

dt
=
∂H̄
∂P
− dP

dt
×B(p) =

∂H̄
∂P

+
λ2
c

2~
dP

dt
×σ , (130)

dP

dt
= −∂H̄

∂R
= −eE(R) , (131)

whose anomalous velocity term is a factor 2 larger than
what one would obtain from the Hamiltonian (123),
naively taking the canonical variable r to be the phys-
ical position operator. Essentially, the same conclusion
has been reached in Ref. 3 for the case of the relativistic
Dirac equation.

The particle density is, according to results (86) and
(127), given by

n(R, t) =

∫
d3P

(2π~)3
Tr4ρ̄ (1− 2qB ·B(p)) , (132)

and let us take the vacuum state with all negative en-
ergies filled, so that ρ̄ = Θ(−τzEP ) and the first term
gives the vacuum charge. However, from the correc-
tion factor proportional to the magnetic field one might
conclude that a sufficiently strong magnetic field leads
to a charge accumulation with respect to the vacuum
state. This kind of charge accumulation is also present
in topological insulators29. Here however, factors like

D = 1 − TrΘrp = 1 − 2H̄M
mc2 are relevant only for enor-

mous magnetic fields of ≈ 1010T , so we can safely drop
all corrections due to Θrp.

It is also insightful to study the current density in the
presence of the electromagnetic field, because it gives a
direct meaning to the divergence-free current terms in
(87). For the simplicity of our discussion, we restrict our-

selves to the non-relativistic limit, where B(p) = −λ
2
c

2~σ =
µs
emc2 and EP = mc2 +P 2/2m, and furthermore, we treat
external fields E and B only to linear order. Since we
want to study excitations of positive energy, we ignore
the completely filled lower band.

Then, our charge density is

n(R, t) = −e
∫

ddP

(2π~)d
ρ̄ ,

so that the charge current density becomes with the help
of (87) and (89) as well as the definition of the spin mag-
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netic moment (c.f. Eq. (129))

j(R, t) = −e
∫

ddP

(2π~)d
P

m
ρ̄− e

mc2
n(R, t) E×µs

− µs×∇R n(R, t) , (133)

where the surface term vanishes since we assume our elec-
tron momentum to be peaked around some mean value
P c. The density ρ̄ can be explicitly determined from
equation (96), here however, we only integrate this equa-
tion over all momenta and arrive at the continuity equa-
tion

∂tn(R, t) + ∇R ·j(R, t) = 0 . (134)

The first term in (133) is the usual definition of a non-
relativistic current, and the second term is the anomalous
velocity contribution due to the electric field. Like for the
electron wave-packet considered in equation (130), using
the non-relativistic Pauli Hamiltonian without the dis-
tinction between canonical and kinetic variables would
yield an anomalous velocity term that is just half of the
correct value. However, the last term seems unusual at
first as it constitutes a persistent current which itself
gives rise to a magnetic moment,

1

2

∫
d3R R×jper = −1

2

∫
d3R R×(µs×∇R n)

= µs

∫
d3R n(R, t) = Nµs , (135)

where N = 1 is the number of electrons. This result
suggests that the notion of electron spin and this internal
persistent current are just different interpretations of the
same effect. For example, a magnetic field couples to this
circular current via the magnetic moment it generates,
and gives rise to the Zeeman energy (129). This comes
close to the original suggestion of an internal rotation of
the electron by Uhlenbeck and Goudsmit49, yet unlike
their idea, it is not the motion of a solid object, instead
it is a genuine quantum phenomena, and thus does not
suffer the same deficiencies concerning rotation velocities
of the electron that would have to be faster than the
speed of light.

As discussed before, the spin-orbit term in the Pauli
Hamiltonian is not gauge invariant, it gives the correct
energy spectrum, but not the correct equations of mo-
tion. That is why it has not been realized for a long
time, as the Pauli Hamiltonian has been mainly put to
test with electronic spectra in atoms or solid matter.
To explicitly show this point, we go into a different ro-
tated frame so that the Berry connection is changed to
Ap → Ap + ~∇pχ(p), and we get an additional term in
the Pauli Hamiltonian ~(∇pχ)(∂rV ). Let us assume for
the moment that we are working in momentum space and
in the operator representation of quantum mechanics,
where the Hamiltonian formally looks the same. Now,
performing a local gauge transformation in momentum

space by adding the phase factor eiχ(p) to the wave func-
tion, we obtain e−iχ(p)V (r)eiχ(p) = V (r − ~∇pχ) =
V (r)− ~(∇pχ)(∂rV ) + O(�~2) which exactly cancels the
additional term, and we are left with the original Hamil-
tonian. Usually, one enforces gauge-invariance in real
space to obtain the electromagnetic field. This is a an
example of gauge invariance in reciprocal space which
leads to the phenomena of spin-orbit interaction, or the
anomalous velocity.

In the above analysis, we needed to drop terms of order
~2, though here, ~ is just a formal expansion parameter,
the real relevant scale being the Compton wavelength
λc ≡ ~

mc . For example, here, we find that the order

of ~A(d) is ~p
4m2c2 = λc

v
c which is to be compared with

our position coordinate, where one realizes that correc-
tions are indeed small unless the potential V (r) varies
strongly on the scale of the Compton wavelength λc.
Consequently, the Hamiltonian (123) still describes the
correct quantum behavior for sufficiently smooth poten-
tials and thus, the term semiclassical expansion seems
misleading. However, for the case of the Coulomb delta-
like potential of the nucleus of an atom it is obviously no
longer true, and this leads to corrections like the Darwin
term which is essential to understand atomic spectra47.

Sometimes, one interprets the terms appearing in the
Pauli Hamiltonian as being a result of what one termed
Zitterbewegung, and which one envisages as helical mo-
tion of the electron. Then the spin-orbit interaction and
its physical consequences like the anomalous velocity can
be understood as a result of this motion. Obviously, we
do not observe such an oscillatory motion here in the
effective theory, when the excitation is confined to a sin-
gle band. Essentially, due to the Wigner transformation,
this rapid oscillation has been transformed into energy
space, and instead, the effects like anomalous velocity
now appear in form of inter-band corrections. We re-
mark that in the case of massless Dirac-Fermions and
if one considers excitations in the vicinity of the Dirac
point, both positive and negative energy states have to
be taken into account simultaneously so that excitations
are not confined to positive or negative energies alone.
In this scenario as for example in Graphene, one obtains
those features termed Zitterbewegung50.

VII. CONCLUSIONS AND OUTLOOK

In this work, we first studied a very general Hamilto-
nian that contains an additional matrix structure describ-
ing different bands, and the goal was to bring this Hamil-
tonian into band-diagonal form which has been achieved
by performing a rotation in band-space. The diagonal
representation is very practical when one wants to study
the low-energy response of the system because then, only
one or few degenerate bands are relevant. Since in the
very general case this diagonalization involves the pair
of non-commutating position r and momentum p oper-
ators, we performed the diagonalization perturbatively
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in ~ by using the Wigner representation. We investi-
gated the Hamiltonian and physical observables in the
rotated frame and how Berry curvatures emerge natu-
rally during this diagonalization procedure. Essentially,
Berry connections describe corrections to the canonical
variables like position and momentum due to inter-band
scattering. This led to the distinction between canonical
and kinetic variables, where the kinetic variables in the
rotated frame are strongly linked to the canonical vari-
ables of the original theory. The canonical ones are, on
the other side, responsible for the proper quantum struc-
ture due to their canonical commutation relations which
defines the quantization. Therefore, both the canonical
and kinetic variables are an important part of our effec-
tive description, and only then will it be consistent. We
also established a link between gauge invariance in mo-
mentum space and the spin-orbit interaction, so that the
Hamiltonian expressed in terms of canonical variables is
enough to study energy spectrum of the system.

Having in mind a gauge-invariant description, we ex-
pressed the Hamiltonian and observables in terms of ki-
netic variables, which naturally leads to the appearance
of Berry curvatures which are gauge invariant and de-
scribe various effects intrinsic to the band structure. In
addition to Berry curvatures, we identified further gauge
invariant objects which are related to circular, or persis-
tent currents, which itself interact with magnetic fields
or with each other and give for example rise to energy
terms, like the Zeeman interaction. For the Dirac equa-
tion, the electron is naturally delocalized in space and
we found the appearance of an internal motion in the
form of circular persistent currents giving rise to a mag-
netic dipole moment, and which exactly corresponds to
the spin magnetic moment of the electron.

Using these kinetic variables, we formulated a Boltz-
mann transport equation that incorporates intrinsic ef-
fects expressed in terms of Berry curvatures. To this end,
we consistently defined various quasi-probability densi-
ties which are connected by a conservation law: Li-
ouville’s theorem in phase space. These can be used
to obtain physically meaningful densities and currents
within the effective description. Furthermore, it is rather
straightforward to include impurity scattering in the
same manner as in Ref. 42, which is subject of future
work. The results derived in this work provide a good
starting point to transform the collision integral into the
diagonalized frame, automatically incorporating the ef-
fect of an external electromagnetic field.

A related work by Wong and Tserkovnyak treated a
general 2-band system by studying a quantum kinetic
equation approach in the rotated frame16. However, the
rotation diagonalizes the Hamiltonian only to zeroth or-
der in a gradient expansion, so that when studying gra-
dient corrections the diagonalization is no longer exact.
It is therefore no longer sufficient to consider only the
diagonal part of the kinetic equation. To this end, it is
necessary to take into account the off-diagonal elements
which is in contrast to our formulation where already the

rotation transformation includes gradient corrections.
Despite performing a formal expansion in ~, similar

to treating the semiclassical limit, we never abandon the
quantum description. One major advantage compared to
other semiclassical approaches is that there is no need for
a re-quantization (see Appendix B for some details). In
fact, our real expansion parameter might be a different
one, like the Compton wave-length as we have seen in the
case of the relativistic Dirac equation. Also, our approach
is systematic in the sense that we can go to arbitrary
order in ~ or inter-band coupling. In this respect, it is also
very interesting to look at terms second order in ~ which
yield important contributions, for example the Darwin
term in the case of the low-energy limit of the relativistic
Dirac equation. Furthermore, new physical phenomena
emerge at O(~2), like the magneto-electric coupling in
insulators which received new attention recently, also due
to the discovery of topological insulators51,52.

Then, one could study a variety of systems that involve
both spin-orbit interaction (SOI) and an inhomogeneous
and time-dependent magnetization. This is interesting
for spin-orbit coupled semiconductors where one has dif-
ferent types like Rashba SOI, Dresselhaus SOI or in the
case of strong SIO in III-V ferromagnetic semiconductors
one can utilize the Luttinger Hamiltonian for hole trans-
port. In these systems the electron or hole spin is in-
tricately coupled to both momentum and orbital degrees
of freedom. In addition, one can have non-magnetic and
magnetic impurity scattering that adds additional com-
plexity to the system and is naturally studied in terms
of a collision integral within the Boltzmann approach.
Thus, the formalism developed in this work seems prac-
tical to attach these kinds of systems in order to study
various transport and dynamical properties. Finally, it
would be interesting to study many particle effects like
electron-electron interations.

This work was financially supported by the DFG
though SFB 767 and SP1285.

Appendix A: Wigner Representation

In the operator representation of quantum mechanics,
we can write the canonical commutation relation (quanti-
ties with hats indicate operators in the original picture),

[π̂µ, x̂
ν ] = i~δ νµ . (A1)

In 4-component notation, the Wigner transformation
explicitly reads∫

d4z eizπ/~A
(
x+

z

2
,x− z

2

)
= A(x,π) , (A2)

and the Moyal product obeys the axiom of associativity,

A ∗B ∗ C = A ∗ (B ∗ C) = (A ∗B) ∗ C , (A3)

and also

(A ∗B)† = B† ∗A† , (A4)
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however, the Moyal product is non-commutative, i.e. A∗
B 6= B ∗A. In fact, the latter property encodes the non-
commutativity of operators in quantum theory which one
can explicitly see by considering the commutator of two
general observables dependent on x and π and which are
band-diagonal,

[A(x,π) ∗, B(x,π)] = 2iA(x,π) sin(~Λ/2) B(x,π)

= i~ {A,B}p +O(~3) . (A5)

It becomes essentially an extended Poisson bracket in the
semiclassical limit which reduces to the normal Poisson
bracket when neither A nor B explicitly depend on ε
which is usually the case.

The Wigner representation has the very practical fea-
ture of automatically symmetrizing operators, when one
transforms back into the operator formulation, for exam-
ple using the back transformation of (A2),

A(x+
z

2
,x− z

2
) =

∫
d4π

(2π~)4
e−izπ/~A(x,π) , (A6)

one obtains

xp→ 1

2
(x̂p̂+ p̂x̂) , (A7)

so what is usually required to be put in by hand in usual
quantum mechanics in order to obtain Hermitian observ-
ables, comes out automatically. Another, more direct
way to see this is by using identities of the form

1

2
(x ∗ p+ p ∗ x) = xp . (A8)

The special operator ordering obtained in this manner is
the so-called Wigner-Weyl ordering.

Appendix B: Some Notes on Requantization

In this section, we address the question of the quan-
tum theoretical aspects of our semiclassical analysis. In
particular, in literature there is the question of how to
properly quantize the theory in the Lagrangian formal-
ism, since one needs to identify the canonical pair of vari-
ables which is the starting point of the quantization. As
mentioned previously, using wave packet analysis3, one
obtains the same set of equations of motion for the cen-
ter of mass coordinates of the wave-packet as in (91) and
(92). Then one can find the Lagrangian, but one does
not know anything about canonical variables, and in the
general case, it is not always easy or possible to find the
pair of canonical variables3.

However, in our framework, we did not encounter such
problems, since firstly, we are working in the Hamilton
formalism, where one knows the canonical variables and
secondly, our theory is quantized at any time, albeit ne-
glecting terms of order O(�~2). This quantization is en-
coded in the structure of the Moyal product, or more
explicitly in the special structure of the commutator in
(47). Furthermore, without major effort, we can go back
to the operator representation of quantum mechanics by
undoing the Wigner transformation.

Since many of our expressions (for example (19), (48),
(29), etc.) are straightforwardly transformed back into
the operator formulation of quantum mechanics, we for-
mally obtain the same expression, except mixtures of r
and p appear properly symmetrized (see Appendix A). In
fact, we retain the full quantum theory which gives cor-
rect results at least to order ~. One just has pay attention
that the Wigner transformation is only with respect to
the canonical pair of variables so kinetic variables have
to be replaced accordingly.

∗ christian.wickles@uni-konstanz.de
† wolfgang.belzig@uni-konstanz.de
1 M. V. Berry, Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences 392, 45 (1984).
2 G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82, 2147

(1999).
3 D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

1959 (2010).
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