
A Secure Cloud Gateway based upon
XML and Web Services

Sebastian Graf
Distributed Systems Group

University of Konstanz
Email: sebastian.graf@uni-konstanz.de

supervised by Prof. Dr. Marcel Waldvogel

Abstract—Storing data in the cloud offers a scalable and easy
way to handle large amounts of data guaranteeing availability
and scalability by the hosting Cloud Service Providers. The price
for the gained availability is uncertainness about the integrity and
confidentiality of the data. Even if common approaches provide
high availability and end-to-end encryption necessary to achieve
Availability and Confidentiality as security goals, other security
requirements like Integrity and Accountability are neglected. The
key management of those clients for encrypting data to satisfy
Confidentiality must furthermore support join-/leave-operations
within the client set. This work presents an architecture for
a secure cloud gateway satisfying the common security goals
Availability, Confidentiality, Integrity and Accountability. Mapping
these security goals, XML as storage base is equipped with
recursive integrity checks, encryption and versioning based on
the native XML storage Treetank. A Key Manager extends this
approach to provide the deployment of multiple clients sharing
keys to the storage in a secure way. New key material is pushed
to a server instance deployed as Platform-as-a-Service (PaaS)
propagating this update to the clients. The server furthermore
applies integrity checks on encrypted data within transfer and
storage. Any communication between client, server and Key
Manager relies on fixed defined workflows based upon web ser-
vices. The proposed architecture called SecureCG thereby enables
collaborative work on shared cloud storages within multiple
clients ensuring confidentiality, consistency and availability of
the stored data.

I. MOTIVATION OF SECURE CLOUD STORAGE

The flexibility of Cloud Based Services offers great possi-
bilities to store any data in a guaranteed available and scalable
manner. All data peculiarities ranging from block based byte
chunks to Microsoft Word-documents are thereby persisted in
the cloud. Cloud Storage Gateways represent convenient ap-
plications mapping such interfaces to common Cloud Service
Providers. Most Cloud Storage Gateways thereby appear as
standalone clients or centralized web applications.

Even if Cloud Storage Gateways enable the power of
Cloud Based Services to different kinds of clients, the gained
Availability comes at a price. While Availability and Confiden-
tiality are provided by the hosting of the encrypted primary
data on Cloud Service Providers, Integrity, Confidentiality
and Accountability are not sufficiently considered in existing
approaches. Another drawback of current approaches is the
dependency of Cloud Storage Gateways to the platform they
run on, e.g. they are shipped as complete operating system
images, hard coded in routers or delivered as platform de-

pendent applications. Flexible usages representing libraries,
server based infrastructures or user specific clients are not
supported. A more flexible usage includes collaborative use
cases and related distributed environments. Even if Availabil-
ity and Confidentiality are already provided, the related key
management must be adapted to satisfy this usage. Common
centralized access controls use the same key for all authorized
clients which complicate modifications on the set of authorized
clients. Besides the necessary protection of the data from
unauthorized access of excluded clients, updated key material
must be propagated to the valid clients in a scalable and secure
manner.

An XML based architecture as Cloud Storage Gateway
named SecureCG satisfies all security requirements, platform
independence and flexible key management. Based upon the
native XML storage Treetank [3], any data is wrapped on
demand into XML[13] and persisted afterwards in the cloud.
The underlaying tree structure enables SecureCG to provide
easy ways of integrity checks supporting the security goal
of Integrity. The Accountability is guarded through the native
versioning of XML within Treetank. Encryption on the data
satisfies the goal of Confidentiality whereas the underling tree
structure of the XML plus the provided versioning function-
ality is exposed. SecureCG supports flexible handling of mul-
tiple Treetank clients with unique de-/encryption keys using
a standalone Key Manager and the VersaKey approach[12].
Equipped with the platform independent, block based interface
jSCSI [7], and the adaptive REST based interface JAX-RX[4],
the client provides a flexible and secure storage interface. The
storage itself is encapsulated by a server deployed as Platform
as a Service(PaaS) implementation. The PaaS implementation
provides own integrity checks to ensure Integrity within the
transmission and the storage of the data. Even if the server only
stores encrypted data to ensure Confidentiality on Cloud Based
Services, the server also checks and propagates new encrypted
keys within the authorized client set. Communication between
client, server and Key Manager relies on web services with
defined workflows. Within this distributed architecture and as
a consequence thereof the scattered functionality, SecureCG
fulfill the security requirements even on untrusted storage
while working with all different types of data.

Treetank as the base of SecureCG implements already the
Accountability and partly the Confidentiality and the Integrity.

http://nbn-resolving.de/urn:nbn:de:bsz:352-154112


Server

Key Manager

PaaS-Implementation

Client

Treetank

XML

node layer

page layer

storage layer

NoSQL File

Key Trail Propag.

Storage
Data Store

Key Trails

Data Interf.

Key Mgmt.

Key Trail Propag.

Access Ctrl.

Local Keys

0

01
DEK

Fig. 1: Overview of proposed architecture

Parts of the client were already released to the open source
community[3]. Results on local machines show constant ac-
cess time regarding read- and write-access of any node within
any version of the XML which is important since requests
on single substructures must scale in the cloud. SecureCG
is provided throughout as plain Java implementation which
enables flexible usages independent from the underlaying
platform.

Current approaches making use of cloud storages either
use web services or pull the access to file system level
based upon iSCSI or NFS. By utilizing web services as
primary communication within a distributed architecture and
by offering additional interfaces with the ability to store data
on block level based upon jSCSI, SecureCG provides a flexible
toolset for secure storage on untrusted third party applications.
The distributed architecture consisting out of client, server and
Key Manager allows scalable and flexible usage without any
restrictions regarding security requirements or functionality.

II. APPLYING SECURITY TO Cloud Storage Gateways

Common Cloud Storage Gateway-approaches claim to store
data “secure” on untrusted third party Cloud Service Providers
by encrypting it. Since the encryption operations take place
either on client side or on trusted applications within the
Cloud Storage Gateway providers, the stored data indeed
satisfies the requirement of Confidentiality. Hence, the key
management offers no adaptive key handling supporting an
evolving set of accessing clients. Besides the Confidentiality
gained through the encryption of the storage, other common
security requirements[10] namely Availability, Integrity and
Accountability are not satisfactorily considered. Availability
includes the prohibition of unauthorized modifications or
deletions of any data whereas it is only partly considered in
current Cloud Storage Gateway-approaches. Any secure Cloud
Storage Gateway must offer fault tolerance data handling like
roll-back-operations of any undesirable data modifications.

Most common cloud storages use only web services as
interfaces restricting any error handling. Error handling is
however mandatory to achieve Integrity within a system.

Integrity is thereby divided into Data Integrity and System
Integrity. System Integrity requires constant consistency of the
data against any malfunctions regarding the architecture. This
requirement can easily be satisfied within hash-based checks
of the transferred and stored data. A direct usage of any
cloud storage via web services inhibits this requirement since
no consistency checks on the transferred data are performed.
Additional to System Integrity, Data Integrity tracks the con-
sistency of authorization within each modification on the data.
User bound signatures satisfy this requirement if bound to a
version and the corresponding modifications.

Extending these goals and thereby the common definition
of security, the NIST Definition about Underlaying Technical
Models for Information Technology Securityj[11] adds two
additional requirements. Accountability describes the ability to
trace any changes within the system. Regarding Cloud Storage
Gateways, versioning or logging of any modifications on the
data enable the Accountability and thereby support additional
security features like non-repudiation.

Assurance, the second requirement defined within the NIST-
definition, represents the necessity to define an overall work-
flow to provide security not only within a system but also
within the using environment. This requirement covers social
and personal aspects out of focus regarding SecureCG.

Satisfying all requirements denoted above, SecureCG con-
sists out of the components shown in Fig. 1: The server
performs computations on the data wherefore direct storages
within the cloud like the Amazon S3 are not used. Due to
the variety of services in the cloud[8], the storage of the data
instead is represented by a server instance deployed as PaaS
(e.g. Google AppEngine, Amazon Beanstalk, Windows Azure,
. . . ). The inevitable non-confidential data handling upon Cloud
Service Providers requires the stored data to be encrypted.
Besides storing the encrypted data, the server furthermore
propagates changes regarding encryption keys even though
the server is not aware about the keys. Section II-C describes
the server component including consistency checks upon en-
crypted data and propagation of new key material.



345v1117234g56bd

19ak8h5y
997d3

4

5 6

7

8 9

345v1117234g56bd mbkl

19aksl24

lr9c3

4

5 6

7

8 967

(a) Recursive Hash including local encoding

Uber

Indirect

Indirect

RevRoot,0

N
am

e

Node,1

Indirect

Indirect

Node,2

Uber

Indirect

Indirect

RevRoot,0

N
am

e

Node,1

Indirect

Indirect

Node,2

Indirect

Indirect

RevRoot,1

N
am

e

Node,1

Indirect

Indirect

Node,3

(b) Page Layer with two versions

Fig. 2: Treetank satisfying Integrity and Accountability

The purpose of any client instance is the providing of
user centric interfaces (e.g. web services or iSCSI) to access
the server within SecureCG. Even if the client can have
flexible representations fitting the requirements of the use
cases, it must be deployed in a trusted environment. The
trusted environment of the client maps the requirement of
Confidentiality within the system. The clients additionally
sign the modifications as well to provide Accountability and
Integrity. The functionalities within the client are described in
section II-A.

To improve the key handling regarding distributed clients
and fine-granular access management, the key management
is performed within an externalized Key Manager. The Key
Manager organizes key material based upon VersaKey[12] for
de-/and encryption as well as for signature issues. Since the
key propagation within the proposed architecture is performed
by the server, the Key Manager can be shutdown while no
updates on the key management is performed. A detailed
description about the role of the Key Manager is given in
section II-B.

The synchronization of key material results in push mes-
sages based on REST between the Key Manager and the server.
The necessity to use sessions motivates the usage of SOAP
for transferring data between the client and the server since
the transfer of primary data needs a preceding authorization
workflow. The concrete workflows including the different
techniques for data transfer are described in section II-D.

A. Outline of the Client

The client within SecureCG pursues the same target like
common Cloud Storage Gateways: Different interfaces map-
ping the requirements of accessing tools are provided within
the client. The ability to wrap any content for secure storage in
the cloud is archived by using XML as common storage for-
mat. As the de-facto “lingua franca” in WWW-environments,
most content is not only available as XML, additionally XML
has the ability to offer flexible representations in a structured
way. Interfaces to web services as well as iSCSI wrap any
alien data into XML as denoted in Fig 1. The client relies, for
handling XML in a scalable way, on the own implemented
native XML database Treetank [3]. Treetank offers different
features on node level (including versioning) based upon

a layered architecture: Node based operations are provided
within the node layer supported by a local node encoding.
Independently of the position of nodes within the tree, all
nodes are stored in pages representing the page layer. The
page layer offers versioning inspired by ZFS[1] and encrypts
any data based on the local keys. The de-/serialization process
of the pages is independent from the concrete storage backends
which include at the moment plain files and the BerkeleyDB.
The data is within all storages only appended so no data is
deleted based upon the versioning of the page layer.

The node based operations of the node layer, enabled by
the local node encoding, include structural integrity checks.
Based upon a recursive hash, each node guards the integrity
of the corresponding subtree. Figure 2a shows an evolving tree
within the insertion of node “67”. The green node is inserted
while the yellow ones are updated with the help of reading
the blue nodes. The arrows between the nodes represent the
pointers stored to each node within Treetank. The insertion of
a node updates all nodes on the ancestor-or-self -axis while
all siblings on this axis must be read to recompute the new
hashes. This functionality can be used not only to provide
consistency within the storage but also while the data is in
process e.g. regarding consecutive REST requests[5]. Equipped
with an incremental hash function[2], the ancestor-sibling
traversal becomes redundant which improves the performance
of recomputing the hashes.

Next steps include the improvement of this approach by
using cryptographic hashes since the incremental hash function
is not aware of isomorphic tree structures. Using cryptographic
hashes, the recursive integrity check guards the System In-
tegrity within storage and transfer of any data. Extending the
page layer with additional checksumming of pages similar to
ZFS supports the System Integrity within the storage and the
transfer. Regarding the necessity to provide Data Integrity,
the hash structures will be extended to sponsor user bound
signatures. The data itself will contain thereby the fingerprint
of the last authorized user which modified the node and the
version.

Security includes non-repudiation whereas Integrity rep-
resents a necessary requirement. A second requirement to
gain non-repudiation is the Accountability to track changes
within the system. Treetank supports, based on the page layer,



versioning functionality. Figure 2b shows an evolving page
layer within two revisions. All modified nodes are stored in
new node pages, denoted by the blue color, created under
the related, red colored revision-root-page representing a new
version. The indirect pages, colored yellow, multiply the fanout
of the overall root (the uber-page) and the single revision-root-
pages. Tag names are stored separately in name pages, colored
green within Fig. 2b. All new versions result in new subtrees
of pages including the modified nodes. Different versioning
algorithms are supported within this hierarchy satisfying the
security requirement of Accountability. Access is based upon
transactions enabling atomic modifications on multiple nodes
within one revision.

Further work to improve Accountability includes the re-
search on adaptive versioning. Whereas incremental versioning
offers the write-optimal way to represent changes between two
versions, differential versioning represents the read-optimal
approach. Since the read- and write-performance should be
balanced over the time, a combined approach consuming more
storage but resulting in predictable workloads is desirable.

All versioned data stored in the cloud must be encrypted
to ensure Confidentiality. This encryption must take place
in a trusted environment. Encryption in the “untrusted”
cloud would violate the Confidentiality since Cloud Service
Providers would have the ability to copy and store the
unencrypted data. Treetank offers the ability to encrypt the
nodes directly in the page layer. Since the encrypted pages
are serialized to the Cloud Service Provider-infrastructure, the
data in the cloud can only be accessed within an authorized
client. The recursive integrity structure upon XML guards
thereby the unencrypted data including any signatures whereas
the integrity check on the page layer cares about the System
Integrity based on the encrypted pages. The management of
the key material for encryption- and signing-operations is
organized within an external Key Manager. This supports the
access of multiple clients to the same storage as described in
section II-B.

The current encryption approach will be extended by a
fine-granular access control mechanism respecting the re-
cursive relationships within the tree structure. Based upon
the hierarchy, access control on higher level nodes includes
automatically the corresponding subtrees. Therefore, access
control with different levels of ability must be introduced. A

Key Manager
3

2
1
0

23

01

DEK E0(01�)

E01�(DEK �)

E23(DEK �)

Key Manager Key Trails
3

2

0

23

01'

DEK'

Fig. 3: Encryption tree within the Key Manager and related
Key Trails

further extension includes the awareness of former versions
within changing keys. Older versions should stay accessible
within all valid clients at this given time.

Using XML as storage format generates synergies due
to the underlying tree structure. The tree structure supports
recursive consistency-checks and encryption ensuring Integrity
and Confidentiality. Since Treetank consists out of flexible
layers supporting versioning and different backends, interfaces
to the storage must only wrap XML around any content.
Available interfaces include REST [4] whereas extensions will
cover even block based communications relying on jSCSI [7].
Treetank offers fine-granular authorization on subtrees[6] to
support Confidentiality even on interface level. Available as
pure Java implementation, Treetank and its extensions offers
multiple possibilities of usages e.g. as third party library or
deployed as an own web service within a trusted environment

B. Standalone Key Manager

If working in a distributed collaborative environment based
upon multiple clients, key management becomes a critical
issue. Encryption keys must be shared within all clients to
access the same data. This influences the security within the
system since the keys have to evolve with ongoing modifica-
tions within the client set. To support join-/leave-operations
of clients, SecureCG externalizes the key management and
equips all clients with disjunct keys. An established approach
to encrypt network traffic called Versakey[12] supports the
joins and leaves of clients. An hierarchy organizes disjunct
keys whereas the leafs represent concrete clients, denoted by
the green nodes while the root represents the encryption key
called DEK represented by the red nodes in Fig. 3. Using an
unique key, each client has the ability to access all data. The
purpose of the internal nodes is the combination of the keys
in the related subtrees. Any leave or join within the client set
results in an adaption of all keys on the path to the root. These
changes result in encrypted logs named Key Trails. The Key
Trails represent the new keys encrypted with the valid former
keys of the authorized clients. The distinction between keys
and Key Trails results in a distribution of the functionality
regarding the management of the keys on the Key Manager
and the propagation of changes within the server.

Figure 3 shows an example regarding the key management.
Client “1” leaves the architecture consisting out of four clients.
The Key Manager generates new keys for 01 → 01′ and
DEK → DEK ′ where DEK ′ is the new encryption key. The
new keys are encrypted with the old, valid keys e.g. E0(01

′)
denotes the new key 01′ encrypted with the key of client “0”.
The encrypted keys E0(01

′), E01′(DEK ′) and E23(DEK ′)
represent the Key Trails and are pushed to the server in order
to be propagated to the clients. Afterwards, all valid clients,
accessing the storage, are triggered to update their keys and
decrypt the new keys with their former ones. To access this
data, each client holds not only its own key but also all keys to
the path to the DEK. Client “3” has thus the ability to access
the new DEK ′ by decrypting the trail E23(DEK ′) with its
stored key 23.



Ext.Tigger Cloud Storage Key Mg

Delete
Client "1"

POST
Key Trails E

0
(0

1
� )

E
0
1
� (

D
E

K
� )

E
2
3
(D

E
K

� )

3

2

1

0

23

01

DEK

(a) Adaption of Key Manager related to join operations of clients

Client Cloud Storage
Session
begin

Keycheck
Challenge

Keycheck
H(H(DEK) ⊕ Challenge)

Validate 
Hash

[Keys differ]
Send Key Trails

Key SyncRecompute 
Keys

Data
Send read/write request

Validate 
Request

[Hashs differ]
Request resend

Data

Session
close

(b) Writing data including key propagation

Fig. 4: Communication Workflows

With this approach and the distributed functionality of
adapting keys and propagating changes, flexible joins and
leaves on the client site are possible. The combination of the
versioning of the data and the traceability of modifications
within the encryption keys based upon the Key Trails enables
time aware access policies without re-encrypting any data.
Additionally, the Key Trails increase the Availability due to
the storage of the encrypted modifications on the server itself.

C. Storing onto any Cloud Service Providers
While common Cloud Storage Gateways map user required

interfaces to common web service calls onto the cloud storage
directly, the proposed server component of SecureCG consists
out of a PaaS implementation since it has to extend the storage
of the data with additional functionalities. These additional
functionalities act as hooks before and after transferring data
guarding Integrity and Confidentiality on the data. Using the
hashes of the pages, System Integrity is ensured while the data
is in transfer or in storage. With each transfer of an encrypted
page, the corresponding hash is delivered. Any difference
related to the delivered hash and the one computed on the
received page results in a request to resend the data. Any
page retrieved from the cloud storage by the server is checked
against the deposed hash as well to prohibit any unforeseen
changes on the data. Before any transfer of data, the keys
are synchronized. In the case of outdated keys, the server
propagates the related Key Trails to the client. This results in an
on-demand service of the Key Manager increasing security and
Availability due to the highly available and encrypted storage
of the Key Trails on the server.

D. Communication between Server, Client and Key Manager
Communication within the proposed architecture takes place

over common web services. SecureCG uses in this context
three different kinds of communication workflows:

1) The first communication workflow is triggered because
of changes on the set of clients and includes, besides an
external trigger, the server and the Key Manager.

2) The second communication workflow represents the
propagation of new key material from the server to the
client.

3) The last communication workflow denotes the transfer
of primary data between client and server.

The first communication workflow is based upon REST
requests shown in Fig. 4a. An external trigger starts the key
changing workflow based on a modifying REST request on the
authorized client key. Note that the encryption keys are not
retrievable over GET as resource. Even though identifiable
as substructures, the only valid operations on the keys are
DELETE- or PUT-operations on authorized client keys. A
deletion request of client “1” results thereby in a new DEK ′

and related Key Trails. The Key Trails are afterwards posted
to the server to become available for all clients. The only
invariant the Key Manager holds within this transmission
workflow is the order: Each request coming in is handled in
an atomic manner resulting in the generation of the Key Trails
followed by the push of the Key Trails to the server instance.
The parts communicating with each other within this workflow
are identifiable as blue components in Fig. 1.

The second and the third communication workflow are
combined as denoted in Fig. 4b. This combination results in
a session-based order of requests. An authorization workflow
checks if the DEK on the client is up-to-date before any
transmission of primary data starts. At the begin of the
authorization workflow, the server sends a challenge to the
client. The client performs a concatenation of the challenge
and the hash of its DEK, H(DEK), and sends back the
result to the server.

Since the server also holds the actual H(DEK), the server
reproduces the concatenation and compares both results. The
server only stores H(DEK) and not the DEK itself since
this would violate the Confidentiality.

If the hash differs, the Key Trails are send to the client to
be decrypted. The decryption operations suitable to the own
keys generate the actual DEK (if the client was not excluded



Treetank, Designing A
Versioned XML Storage

10

Evaluation
Treetank is implemented in Java and an ongoing project within the Distributed Systems Group of
the University of Konstanz. It acts as a platform for multiple concluded and ongoing projects. For
extensibility reasons, Treetank works with flat files as well as with the Berkeley DB Java Edition[bdb]
which is also used as the transaction-log for the WriteTransactions.

Our evaluation is divided into two benchmarks. For the first benchmark, we insert XMark[xma02]
instances of two different sizes multiple times in our system. Each insertion results in a version. To
keep the number of nodes per version constant, we remove the data from the old version before starting
the new insertion operation.

Figure 7. Shredding and Serializing of XMark

0 20 40 60 80 100

5e
+0

3
2e

+0
4

5e
+0

4
2e

+0
5

revisions

[m
s]

XMark serialize, f=0.1
XMark serialize, f=1.0
XMark shredding, f=0.1
XMark shredding, f=1.0

Figure 7 shows the result. The shredding represents the insertion process while the serializing stands
for the retrieval process where the entire tree of one version is retrieved. We see that our systems
scales with the size of the data as well as with the insertion and retrieval time. The write-operation
takes always approximately the same time regardless of the version in which the data is inserted.
Regarding the serialization of each version, the page-layer is touched in the same manner which offers
similar retrieval performance within all versions. The reason for these scalings regarding insertion and
retrieval time is our layered architecture which offers the same insert- and access time regardless of
the requested version.

The second benchmark is the random access adaption of an incremental growing structure:
ElementNodes are randomly inserted in the tree either as first-childs or as right-siblings. After each
insertion, a random move to a node is performed where the next insertion takes place. A commit is
performed after the insertion of a fixed number of nodes (250, 500 and 1000). This operation continues
until 1000 revisions are created. This scenario represents the worst-case since no assumption can be
make where the next modification will occur and how it will affect the overall structure. Therefor we
chose to use a differential versioning approach within this benchmark to exalt the worst-case scaling
within the test of our architecture.

Fig. 5: XMark Shredding within different versions

from the architecture). After the optional synchronization of
the DEK, the client requests the primary data. The requests
are thereby checked against the hashes of the transferred pages
to prohibit transmission errors. If the hashes differ, a resend
request is returned. Despite the first communication workflow
using REST , any request from the clients to the server rely
on SOAP due to the prefixed authorization workflow. The
components of this communication workflow are colored red
in Fig. 1.

III. CONCLUSION AND RESULTS

The proposed architecture combines common techniques
from the area of XML databases, web services and security to
provide an useable framework for secure cloud storage. The
resulting framework will be extensible regarding interfaces to
the client and flexible with focus on different possibilities of
appliance. Furthermore, the resulting approaches are applied
directly into an open-source reference implementation proving
the suitability as well as the scalability.

Fig. 5 shows the shredding of two different XMark[9]-
instances into Treetank (f = 0.1,f = 1.0). Within each
revision the tree is deleted before inserting a new instance.
Inserting and retrieving data related to any revision takes
approximately the same amount of time since Treetank scales
due to its page layer. Based upon the page layer, the position of
nodes in the tree are independent from their position within the
storage and therefore within the revision. This independence
ensures the scalability within the proposed architecture.

The Treetank-based client and the PaaS-based server ensure
Confidentiality, Accountability, Integrity and Availability. Ad-
ditionally, the independent Key Manager supports individual
keys between disjunct clients. Already partially released as
open source, the proposed architecture consisting out of a
combination of complementary approaches offers great ben-
efits for the secure usage of Cloud Based Services within a

collaborative environment.

IV. FINAL STEPS

Even if encryption is already implemented within the client,
the access control needs further development to offer fine-
granular, recursive-aware access on any subtree. This access
control must be adapted within Versakey to fit the versioning
approach to ensure access on older revisions for former
clients. Besides the encryption which respects the versioning,
the versioning itself must be adapted to balance between
incremental- and differential versioning. This adaption, which
might result in intermediate full-dumps of the entire data,
must respect the encryption by extending the client based
key handling with additional versioning functionality. The
current consistency check are either performant or not aware
of isomorphic subtrees. A combination of both approaches
will satisfy the requirements of a cryptographic hash without
consuming as much time as the current approach. To ensure
System Integrity even in the cloud, a second hash structure
will be introduced to guard the encrypted pages. Both hashes
are combined with user bound signatures to combine System
Integrity and Data Integrity on the XML within the structure
(node layer) and the encrypted storage (page layer).

V. ACKNOWLEDGEMENTS

I would like to thank my supervisor, Marcel Waldvogel,
for his guidance. Furthermore I would like to thank Anna
Dowden-Williams for her more than valuable input.

REFERENCES

[1] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum,
“The zettabyte file system,” in FAST 2003: 2nd Usenix Conference on
File and Storage Technologies.

[2] S. Graf, S. K. Belle, and M. Waldvogel, “Rolling boles, optimal XML
structure integrity for updating operations,” in Proceedings of the 20th
international conference on World wide web, ser. WWW ’11. New
York, NY, USA: ACM, 2011.

[3] S. Graf, M. Kramis, and M. Waldvogel, “Treetank: Designing a ver-
sioned XML storage,” in XMLPrague’11, 2011.

[4] S. Graf, L. Lewandowski, and C. Grün, “JAX-RX, unified REST access
to XML resources,” University of Konstanz, Tech. Rep., 2010.

[5] S. Graf, L. Lewandowski, and M. Waldvogel, “Integrity assurance for
RESTful XML,” in Proceedings of the 2010 international conference
on Advances in conceptual modeling: applications and challenges, ser.
ER’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 180–189.

[6] S. Graf, V. Zholudev, L. Lewandowski, and M. Waldvogel, “Hecate,
managing authorization with restful xml,” in Proceedings of the 2nd
Workshop on RESTful Services, ser. WS-REST ’11, 2011.

[7] M. Kramis, V. Wildi, B. Lemke, S. Graf, H. Janetzko, and M. Waldvogel,
“jscsi - a java iscsi initiator,” in Paper for: Jazoon’07 - Internationale
Konferenz für Java-Technologie. Universitt Konstanz, 2007.

[8] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009.

[9] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and
R. Busse, “Xmark: A benchmark for xml data management,” in In-
ternational Conference on Very Large Data Bases, 2002.

[10] B. Schneier, Secrets and lies: digital security in a networked world.
John Wiley, 2000.

[11] G. Stoneburner, “Underlaying technical models for information technol-
ogy security,” National Institute of Standards and Technology, 2001.

[12] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
VersaKey framework: Versatile group key management,” IEEE Journal
on Selected Areas in Communications, vol. 17, no. 9, pp. 1614–1631,
Sep. 1999.

[13] E. Wilde, “Putting things to REST,” Tech. Rep., 2007.


	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-154112



