Catalytic Cyclopropanation of Polybutadienes

JUAN URBANO,1 BRIGITTE KORTHALS,2 M. MAR DÍAZ-REQUEJO,1 PEDRO J. PÉREZ,1 STEFAN MECKING2

1Laboratorio de Catálisis Homogénea, Departamento de Química y Ciencia de los Materiales, Unidad Asociada al CSIC, Centro de Investigación en Química Sostenible, Campus de El Carmen s/n, Universidad de Huelva, 21007 Huelva, Spain
2Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany

ABSTRACT: Catalytic cyclopropanation of commercial 1,2- or 1,4-cis-polybutadiene, respectively, with ethyl diazoacetate catalyzed by [TpBr3Cu(NCMe)] [TpBr3 = hydrotris(3,4,5-tribromo-1-pyrazolyl)borate] at room temperature afforded high molecular weight (Mn > 105 mol⁻¹) side-chain or main-chain, respectively, carboxyethyl cyclopropyl-substituted polymers with variable and controlled degrees of functionalization. Complete functionalization of 1,4-cis-polybutadiene afforded poly(ethylene-alt-(3-ethoxycar-bonyl-cyclopropene)]. Catalytic hydrogenation of residual double bonds of partially cyclopropanated polybutadienes provided access to the corresponding saturated polyolefins. Thermal properties are reported.

KEYWORDS: carbone addition; catalysis; functionalization of polymers; organometallic catalysis; polar groups; polybutadienes

INTRODUCTION Catalytic insertion polymerization of ethylene and propylene is employed for the production of more than 60 million tons of polyolefins annually.1 These polymers are hydrocarbons, without any heteroatom-containing functional groups, such as for example ester moieties. An incorporation of such polar moieties is of broad interest, for example, to increase interactions with polar surfaces, such as metals, or to achieve stability toward hydrocarbon solvents. Albeit significant advances have been achieved most recently with Pd(II) catalysts,2,3 the incorporation of polar-substituted vinyl co-monomers H2C=CHX in catalytic insertion polymerization is challenging due to unfavorable interactions of the polar group (X) with the active sites.4 Thus, ethylene-vinyl acetate copolymers are produced industrially on a large scale by high pressure free-radical polymerization, without microstructure control. Saturated high-performance nitrile-containing elastomers, prepared by free-radical copolymerization of butadiene and acrylonitrile with subsequent post-polymerization hydrogenation may serve as another example.

An alternative to direct incorporation of polar-substituted comonomers are post-polymerization reactions on insertion polymers, however, for saturated polyolefins modifications are challenging due to the lack of reactive moieties. Most methods were developed for polypropylene and are based on radicals formed by the decomposition of peroxides at high temperature.5 A disadvantage is chain scission, which accompanies these reactions due to the severe conditions. Carbenes, formed by decomposition of diazoacetate at high temperature, can insert into a C–H bond of polyethylene or polypropylene.6 Examples of catalytic post-polymerization reactions on saturated polyolefins are rare. The oxyfunctionalization of polyethylenes and polypropylenes by metal-based catalysts can afford hydroxyl groups.7 We have recently reported8 the functionalization of saturated polybutene and poly(ethylene-1 octene) by insertion of :CHCO2Et into C–H bonds employing commercially available ethyl diazoacetate (EDA) as the carbene source, using [TpBr3Cu(NCMe)] as a catalyst precursor (TpBr3 = hydrotris(3,4,5-tribromo-1-pyrazolyl)borate). Degrees of functionalization, which occurred on tertiary and secondary sites, were 4–10%. A significantly higher reactivity for post-polymerization reactions can be provided by double bonds in hydrocarbon polyolefins or elastomers. Polybutadiene is a particularly attractive substrate as the double bonds present in every repeat unit are suitable for a variety of transformations, and via the polymer microstructure (1,4-cis; 1,4-trans and 1,2-vinyl repeat units) crystallinity and thermal properties can be varied. Thus, post-polymerization modification of polybutadiene by oxidation,9 epoxidation,10 hydroboration,11 hydroformylation,12 and hydroxysilylation13 has been reported.14 Despite the large number of studies on metal-catalyzed olefin cyclopropanations,15 the addition of a carbene moiety, from diazocompounds, to such unsaturated polymers has only been scarcely reported.16 We are only aware of the addition of dihalocarbenes to unsaturated polymers upon sodium iodide-catalysed decomposition of (trifluoromethyl)phenyl-mercury, at high temperatures.17
We now report on saturated, cyclopropyl carboxylate-substituted polyolefins prepared by catalytic cyclopropanation of polybutadienes with variable microstructures under mild conditions.

RESULTS AND DISCUSSION

Functionalization of 1,2-Polybutadiene

Early work from our group demonstrated that complexes Tp^3Cu ($\text{Tp}^3 = \text{hydrototrispyrazolyborate ligand}$) catalyze the cyclopropanation of low-molecular-weight olefins with EDA under mild conditions. We have now studied the catalytic modification of commercially available polybutadienes by this approach (eq 1):

To a solution of 1,2-polybutadiene and catalytic amounts of the complex $\text{Tp}^{Br_3}\text{Cu(NCMe)}$ in dichloromethane, a solution of EDA in the same solvent was added slowly over 15 h by means of a syringe pump. After completion, no EDA was detected by NMR on the reaction mixture. NMR spectroscopy of the isolated polymers revealed their functionalization as well as the degree of incorporation of the carbene unit. Figure 1 shows the ^1H NMR spectra of several samples with different degrees of functionalization. The CHCO_2Et fragments are unambiguously assigned to the resonance centered at 4.10 ppm of the methylene protons and 1.25 ppm of the methyl group. The degree of incorporation can be determined from the relative integrals of the methylene protons of the CHCO_2Et moiety and the olefinic resonances at 5.30 ppm.

Polymers with degrees of functionalization in the range from 3 to 80% were obtained, depending on the EDA: polymer double bond ratio (Table 1). A straightforward, linear correlation was observed (Fig. 2), allowing for a facile control of polymer composition.

TABLE 1 Cyclopropanation of 1,2-Polybutadiene

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat./EDA/ PBD</th>
<th>Degree of Functionalization [%]b</th>
<th>M_n^c [103 g/mol]</th>
<th>M_w^c [103 g/mol]</th>
<th>M_w/M_n</th>
<th>$T_g^d [^\circ C]$</th>
<th>$T_m^d [^\circ C]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n.a.</td>
<td>0</td>
<td>100</td>
<td>245</td>
<td>2.4</td>
<td>-10</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>1/30/300</td>
<td>3</td>
<td>93</td>
<td>256</td>
<td>2.8</td>
<td>-4</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>1/50/300</td>
<td>4</td>
<td>98</td>
<td>280</td>
<td>2.9</td>
<td>-3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>1/50/150</td>
<td>10</td>
<td>86</td>
<td>273</td>
<td>3.2</td>
<td>6</td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td>1/100/300</td>
<td>16</td>
<td>98</td>
<td>254</td>
<td>2.6</td>
<td>10</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>1/200/300</td>
<td>36</td>
<td>133</td>
<td>276</td>
<td>2.1</td>
<td>26</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>1/150/150</td>
<td>42</td>
<td>121</td>
<td>267</td>
<td>2.2</td>
<td>30</td>
<td>/</td>
</tr>
<tr>
<td>8</td>
<td>1/300/300</td>
<td>43</td>
<td>120</td>
<td>274</td>
<td>2.3</td>
<td>27</td>
<td>/</td>
</tr>
<tr>
<td>9</td>
<td>1/600/600</td>
<td>45</td>
<td>121</td>
<td>267</td>
<td>2.2</td>
<td>31</td>
<td>/</td>
</tr>
<tr>
<td>10</td>
<td>1/450/300</td>
<td>68</td>
<td>150</td>
<td>293</td>
<td>1.9</td>
<td>43</td>
<td>/</td>
</tr>
<tr>
<td>11</td>
<td>1/600/300</td>
<td>80</td>
<td>156</td>
<td>289</td>
<td>1.8</td>
<td>49</td>
<td>/</td>
</tr>
</tbody>
</table>

*0.3 g (5.5 mmol of polybutadiene, 9.25 μmol $\text{Tp}^{Br_3}\text{Cu(NCMe)}$), 20 mL CH_2Cl_2; EDA added as solution in 10 mL of CH_2Cl_2.

b Determined by ^1H NMR spectroscopy on the isolated polymer.

c Determined by GPC in THF at 40 $^\circ$C vs. linear PS standards.

d Determined by DSC.
In view of that molecular weights from GPC are apparent molecular weights determined vs. linear polystyrene standards, and the hydrodynamic behaviour must be expected to vary with functionalization, the molecular weights overall reflect the increase of molecular weight with increasing degree of functionalization.

Furthermore, the essentially unaltered polydispersity can be taken as an evidence of the lack of chain scission, a notorious problem of many post-polymerization reactions. GPC traces obtained with UV and RI detection are quite similar, indicating that modification occurs uniformly over all molecular weights. Glass transition temperatures increase with increasing degree of modification, which can be related to an increased chain stiffness and reduced mobility by the comparatively bulky carboxyethyl cyclopropyl substituents. At the same time T_m and crystallinity are reduced by comparison to the semicrystalline starting material.

FIGURE 2 Degree of functionalization (as percentage of cyclopropanated double bonds) of 1,2-polybutadiene with the EDA: polymer double bond molar ratio (catalyst to polymer double bonds 1/300).

Functionalization of 1,4-Polybutadiene

The above methodology was studied as a means for modification of a 1,4-cis-polybutadiene elastomer (eq 2) NMR spectroscopy on the isolated polymer again allows for confirmation and quantification of cyclopropanation (Fig. 3). Resonances for the carboxylate moiety were observed in similar regions of the NMR spectra related to the aforementioned 1,2-polybutadiene derivatives.

A completely functionalized polymer could be obtained using a two-fold excess of EDA (Table 2). The resulting polymer, poly[ethylene-alt-(3-ethoxycarbonylcyclopropene)], that has not been yet reported, to our knowledge, displays molecular weight values of $M_n = 360,000$, $M_w = 637,000$ with $T_g = 25 ^\circ C$. Such degree of incorporation based on converted double bonds of the polymer has only been once in the aforementioned addition of dihalogencarbenes units from mercury-based carbene precursors.17

The symmetrical nature of poly[ethylene-alt-(3-ethoxycarbonylcyclopropene)] and reduced structural complexity by comparison to only partially substituted products allows for a more detailed NMR analysis (see SI for spectra). $^{1}H/^{13}C$ chemical shifts of the ethoxy group respectively appear at 1.2/14 ppm for the methyl, 4.1/61 ppm for the methylene, the carbonyl group resonating at 173 ppm. For less functionalized groups, relative integration of these resonances and the olefin ones provide the degree of incorporation (see Fig. 3). It is worth mentioning that these metal-induced carbene additions from diazo compounds occur throughout a concerted mechanism,15 therefore retention of the configuration of the C–C double bond is expected. Because of this, and in spite of the lack of NMR data (due to signal

TABLE 2 Cyclopropanation of 1,4-cis-Polybutadiene

<table>
<thead>
<tr>
<th>Entry</th>
<th>cat./EDA/PBD</th>
<th>Degree of Functionalization [%]</th>
<th>T_g [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>−81</td>
</tr>
<tr>
<td>2</td>
<td>1/200/600</td>
<td>10</td>
<td>−74</td>
</tr>
<tr>
<td>3</td>
<td>1/400/600</td>
<td>31</td>
<td>−46</td>
</tr>
<tr>
<td>4</td>
<td>1/600/600</td>
<td>46</td>
<td>−21</td>
</tr>
<tr>
<td>5</td>
<td>1/900/600</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1/1200/600</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

a 0.3 g (5.5 mmol) of polybutadiene, 9.25 μmol Tp$^{3}Cu(NCMe)$_3, 20 mL of CH$_2$Cl$_2$; EDA added as solution in 10 mL of CH$_2$Cl$_2$ using a syringe pump.
b Determined by 1H NMR spectroscopy.
c Determined by DSC.
broadening) to assess such stereochemistry, is more likely that the cis-configuration has been maintained after functionalization.

The appropriate selection of the catalyst:EDA:polymer ratio allows for control of the degree of functionalization of the polymer. A quasi-linear correlation between the degree of functionalization and the EDA concentration exists (Fig. 4). Similarly as observed for 1,2-polybutadiene, the glass transition temperature increases with the portion of carboxyethyl cyclopropyl-units incorporated.

Hydrogenation of Partially Functionalized Polymers

Exposure of the partially modified polymers to 50 bar of hydrogen pressure in the presence of Wilkinson's catalyst, [RhCl(PPh₃)₃], at 100 °C resulted in complete conversion of all residual double bonds. This provides access to the saturated polyolefins with variable carboxyethyl cyclopropyl-contents, as exemplified for the side-chain substituted polymers obtained from 1,2-polybutadiene (Table 3).

Cleavage of the cyclopropane ring does not occur under these hydrogenation conditions. This is also evidenced independently and straightforwardly by exposure of the completely functionalized poly[ethylene-alt-(3-ethoxy carbonyl-cyclopropene)] to the hydrogenation conditions. No alteration of the ¹H NMR spectrum is observed, and the signals of the cyclopropane remain (see Supporting Information).

Glass transition temperatures of the saturated polymers are slightly higher than the corresponding unsaturated starting materials, and cover the range from −30 to +40 °C (Fig. 5 and Table 3). As for the unsaturated polymers, Tg increases with the degree of carboxyethyl cyclopropyl-substitution.

EXPERIMENTAL

Materials and General Considerations

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Solvents were dried and degassed before use with a MBRÄUIN SPS system. NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer on CDCl3 solutions. NMR assignments were confirmed by ¹H, ¹³C, ¹D, and ²D homo and heteronuclear experiments. 1,4-cis-polybutadiene Buna® CB 24 from Lanxess with a 1,4-cis-content of 96% and syndiotactic 1,2-polybutadiene JSR RB® 820 from Japan Synthetic Rubber with a 1,2-content of 92% were employed. EDA was purchased from Aldrich. [Tp³Br₃Cu(NCMe)] was prepared according to literature.¹⁹ GPC was carried out on a Polymer Laboratories PL-GPC 50 instrument with two PLgel 5 μm MIXED-C columns in THF at 40 °C against polystyrene standards. DSC was carried out on a Netzsch F1 instrument, in the range from −100 to +150 °C at 10 K min⁻¹ heating/cooling rate (Tg and Tm given are from the secondary heating curves). Both

![FIGURE 4](image-url) Correlation of the degree of functionalization of 1,4 polybutadiene and EDA: polymer double bond molar ratio.

![FIGURE 5](image-url) Correlation of glass transition temperature with polymer composition. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

<table>
<thead>
<tr>
<th>Entry</th>
<th>[%]b</th>
<th>M₄c</th>
<th>M₆c</th>
<th>M₆/M₄c</th>
<th>Tg [°C]d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>245</td>
<td>2.4</td>
<td>−30</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>64</td>
<td>144</td>
<td>2.3</td>
<td>−28</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>57</td>
<td>121</td>
<td>2.1</td>
<td>−20</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>160</td>
<td>267</td>
<td>1.7</td>
<td>−10</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>98</td>
<td>172</td>
<td>1.8</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>100</td>
<td>216</td>
<td>2.2</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>134</td>
<td>228</td>
<td>1.7</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>144</td>
<td>247</td>
<td>1.7</td>
<td>44</td>
</tr>
</tbody>
</table>

a 0.1 g of functionalized polymer, [RhCl(PPh₃)₃] (6 μmol), PPh₃ (114 μmol), 20 mL of toluene; 50 atm of H₂; 100 °C; 20 h.
b Degree of functionalization determined by ¹H NMR spectroscopy.
c Determined by GPC in THF at 40 °C vs. linear PS standards.
d Determined by DSC.

TABLE 3 Hydrogenation of Cyclopropanated 1,2-Polybutadienes

4442
polymers of Table 2, entry 1, and 2, were measured with 30 K min$^{-1}$.

Catalytic Functionalization of Polybutadienes

The polymer (0.3 g, 5.5 mmol) was dissolved in 20 mL of CH$_2$Cl$_2$ in a Schlenk flask, and Tp11Bu$^+$Cu(NCMe) (0.00925 mmol) was added to the stirred solution. By means of a syringe pump, a solution of EDA in 10 mL of CH$_2$Cl$_2$ was added slowly to the polymer solution for 15 h. At the end of the addition period, no EDA was detected in solution by NMR. The solution was concentrated to 10 mL in vacuo. A volume of 50 mL of methanol was added to precipitate the polymer. Filtration, further washing with 2 × 30 mL of methanol, and drying under vacuum afforded the product polymer in >85–90% yield.

Analytical data for poly[ethylene-alt-(3-ethoxycarbonylcyclopropene)]: 1H NMR (400 MHz, 20 °C, CDCl$_3$); 0.08 (br s, CHCO$_2$Et), 1.23 (t, OCH$_2$CH$_3$), 1.38 (br s, CH$_2$H$_2$CH$_2$H$_2$), 1.42 (br s, CH CHCO$_2$Et), 1.60 (br s, CH$_2$H$_2$CH$_2$H$_2$), 4.05 (br s, OCH$_2$CH$_3$). 13C{1H} NMR (100 MHz, 20 °C, CDCl$_3$): 14.3 (OCH$_2$CH$_3$), 26.8 (CHCO$_2$Et), 27.2, 27.4, 27.7, 60.3 (OCH$_2$CH$_3$), 174.1 (CO$_2$Et).

Hydrogenation of Functionalized Polymers

0.1 g of the polymer obtained as above were dissolved in 20 mL of toluene and placed into a Schlenk flask along with Wilkinson's catalyst (0.006 mmol) and PPh$_3$ (0.114 mmol). 0.1 g of the functionalized polymer obtained. The mixture was stirred to obtain a homogeneous solution, and was then transferred into a pressure vessel and pressurized to 50 atm of H$_2$. After cooling to room temperature, the volume was reduced to 10 mL and methanol was added (50 mL) to induce the separation of the solid polymer. Filtration, washing and drying afforded the hydrogenated, functionalized polymer in ca. 70% yield.

CONCLUSIONS

Post-polymerization cyclopropanation of polybutadienes, introducing polar carbamoyl cyclopropyl units, occurs under mild conditions with Tp11Bu$^+$Cu(NCMe) as a catalyst precursor. This was demonstrated for semicrystalline 1,2-polybutadiene as a starting material, resulting in side-chain functionalization. Degrees of functionalization can be varied over a wide range in a controlled fashion. Complete conversion of 1,4-polybutadiene affords the novel poly[ethylene-alt-(3-ethoxycarbonylcyclopropene)]. This is noteworthy in view of the often limited conversions in post-polymerization reactions. No evidence of a conceivable chain scission, problematic in many post-polymerization reactions, was observed. Partially functionalized polymers could be converted completely to the corresponding saturated polyolefins by catalytic hydrogenation. Introduction of the comparatively bulky polar carbamoyl cyclopropyl groups results in increased glass transition temperatures in all cases.

The authors thank the MEC (Proyecto CTQ2008-00042BQU and Acción Integrada HA2004-0067), the Junta de Andalucía (P05-FQM0914), and the Universidad de Huelva for financial support. J. Urbano thanks the Junta de Andalucía for a student fellowship. Support by a DAAD travel grant is acknowledged.

REFERENCES AND NOTES